
Computers & Operations Research 143 (2022) 105794

Available online 18 March 2022
0305-0548/© 2022 Elsevier Ltd. All rights reserved.

Time dependent orienteering problem with time windows and service time
dependent profits

M. Khodadadian a, A. Divsalar b,*, C. Verbeeck c, A. Gunawan d, P. Vansteenwegen e

a Department of Engineering and Technology, Shomal University, Amol, Iran
b Department of Industrial Engineering, Babol Noshirvani University of Technology, Babol, Iran
c Department of Strategy, EDHEC Business School, Roubaix, France
d School of Computing and Information Systems, Singapore Management University, Singapore
e KU Leuven Institute for Mobility – CIB, KU Leuven, Leuven, Belgium

A R T I C L E I N F O

Keywords:
Time dependent orienteering problem
Service time dependent profits
Variable neighborhood search
Tourist trip planning
Real data set

A B S T R A C T

This paper addresses the time dependent orienteering problem with time windows and service time dependent
profits (TDOPTW-STP). In the TDOPTW-STP, each vertex is assigned a minimum and a maximum service time
and the profit collected at each vertex increases linearly with the service time. The goal is to maximize the total
collected profit by determining a subset of vertices to be visited and assigning appropriate service time to each
vertex, considering a given time budget and time windows. Moreover, travel times are dependent of the de
parture times. To solve this problem, a mixed integer linear model is formulated and a metaheuristic algorithm
based on variable neighborhood search (VNS) is developed. This algorithm uses three specifically designed
neighborhood structures able to deal with the variable service times and profits of vertices. Extensive compu
tational experiments are conducted on test instances adapted from the TDOPTW benchmarks, to validate the
performance of our solution approach. Furthermore, a real instance for the city of Shiraz (Iran) is generated.
Experimental results demonstrate the suitability of the TDOPTW-STP in practice, and demonstrate that the
proposed algorithm is able to obtain high-quality solutions in real-time. Sensitivity analyses clearly show the
significant impact of the service time dependent profits on the route plan, especially in the presence of travel
time dependency and time windows.

1. Introduction

The orienteering problem (OP) is specified on a network in which
vertices represent geographical locations where a profit can be gained
and where arcs represent connections between vertices with a certain
travel time. The OP is the integration of selecting a subset of vertices to
visit, with determining an appropriate path for visiting the selected
vertices; thereby the sum of accumulated profits is maximized under a
limited time budget. Moreover, it is assumed that each vertex can be
visited at most once. The OP has many intriguing applications in de
fense, tourism and logistics (Vansteenwegen et al., 2011). One of the
interesting variants of the OP is the Time Dependent OP with Time
Windows (TDOPTW) (Verbeeck et al., 2014). In this problem, each
vertex has a time window (opening time and closing time) and a
deterministic service time, and the travel time required to traverse a link

between two vertices relies on the time of the day the link is passed. As
mentioned in Verbeeck et al. (2014), formulating the time dependent
problem makes us capable of considering congestion in (multi-modal)
routing problems applied in logistic or tourist trip planning. Another
relevant variant of the OP in the literature is the OP with Service Time
dependent Profits (OPSTP) (Yu et al., 2019), where the collected profit
at each vertex is not a fixed single value but depends on the duration of
its service or visit time. In this problem, restricted by a time budget, it
may not be possible or desirable to gather the maximum profit at each
visit. Thus, in order to maximize the total profit, not only a subset of
vertices needs to be selected, but also the suitable service time at each
selected vertex has to be determined. Many real world applications for
the OPSTP has been introduced in the literature. For example, the
fishing problem, in which there is a limited allowed time for fishing at
each location, having variable amount of fish (Erdoǧan and Laporte,

* Corresponding author.
E-mail addresses: khodadadian@shomal.ac.ir (M. Khodadadian), ali.divsalar@nit.ac.ir (A. Divsalar), cedric.verbeeck@edhec.edu (C. Verbeeck), aldygunawan@

smu.edu.sg (A. Gunawan), pieter.vansteenwegen@kuleuven.be (P. Vansteenwegen).

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

https://doi.org/10.1016/j.cor.2022.105794
Received 18 August 2021; Received in revised form 15 March 2022; Accepted 15 March 2022

mailto:khodadadian@shomal.ac.ir
mailto:ali.divsalar@nit.ac.ir
mailto:cedric.verbeeck@edhec.edu
mailto:aldygunawan@smu.edu.sg
mailto:aldygunawan@smu.edu.sg
mailto:pieter.vansteenwegen@kuleuven.be
www.sciencedirect.com/science/journal/03050548
https://www.elsevier.com/locate/cor
https://doi.org/10.1016/j.cor.2022.105794
https://doi.org/10.1016/j.cor.2022.105794
https://doi.org/10.1016/j.cor.2022.105794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105794&domain=pdf

Computers and Operations Research 143 (2022) 105794

2

2013). Other examples are the tourist trip planning (Yu et al., 2015), the
traffic routing problem (Zhu et al., 2014), and finding the shortest path
problem for target searching (Guitouni and Masri, 2014; Pietz and
Royset, 2013).

In the current research, a combination of TDOPTW and OPSTP is
addressed which we call the TDOPTW-STP. Many interesting applica
tions of TDOPTW-STP can be found in a situation where each vertex has
a time window and a service time dependent profit, while the travel time
between two vertices relies on the time of the day that link is passed.

In the presented TDOPTW-STP, each vertex has lower and upper
bounds for its service time and the collected profit at each vertex is
assumed to increase linearly with the service time. The addition of this
service-time dependent profit (STP) to the TDOPTW makes the problem
more realistic where in real-life, higher profits can be collected during a
longer service time, respecting the corresponding lower and upper
bounds. Here, we mention some possible applications of the TDOPTW-
STP in tourism, logistics, entertainment, and military sectors, where
each vertex may have a bounded profit as a linear function of its service
time.

In the tourism sector, POIs have opening and closing times, and
network travel times may change significantly in peak and off peak
hours. On the other hand, duration of visiting POIs by different tourists
may be different. For instance, in visiting a museum, some tourists stay
longer to collect more information. This increases their visit time, but
also their appreciation. In this case, the collected profit depend on the
visiting duration at the museum (Vansteenwegen and Gunawan, 2019).
In supply chain management, and the VRP with profits for example, or
reverse logistics, gaining more profit may require a longer service time
at a customer, while travel times depends on traffic congestion (Van
steenwegen and Gunawan, 2019). In the entertainment sector, it is
trivial that a longer show at a location, results in a higher profit that can
be collected (Erdoǧan and Laporte, 2013). It is also probable that show
locations have time windows and that travel times between them vary
during the day because of weather and traffic conditions. Other appli
cations arise in the military sector and humanitarian logistics, e.g.
search and rescue, where a vehicle looks for gathering information and
finding survivors, staying longer at target locations should increase the
amount of information and number of survivors (Erdoǧan and Laporte,
2013). In these situations, depending on conditions of target locations
and network properties, target locations may be constrained by time
windows, and travel times may fluctuate.

Note that, in all these cases, at each vertex, a minimum service time
should be passed to gain the minimum profit and besides, the collected
profit has an upper bound as the maximum profit. Moreover, incorpo
rating time windows and time dependency, the variable service time at a
vertex in the TDOPTW-STP provides the decision opportunity to
consume the time budget more efficiently in the trade-off between travel
time and service time. This new combination of properties is a motiva
tion for researchers and practitioners to develop new models and algo
rithms in resource management.

The main contributions can be summarized as follows:

• The TDOPTW-STP is introduced, motivated and mathematically
modelled.

• A metaheuristic solution algorithm based on the variable neighbor
hood search (VNS) is proposed to solve the problem.

• A set of problem instances with known optimal solutions are
generated based on existing benchmark instances of TDOPTW and
are used to evaluate the performance of the solution method.

• A real data set based on a real road network is generated and used to
show how the TDOPTW with service time dependent profits (STP)
can be tackled in a practical case.

Following a literature review in Section 2, the mathematical model
of the TDOPTW-STP is described in Section 3. Then, the solution algo
rithm is explained in Section 4. Afterwards, results and discussion is

presented in Section 5. Section 6 concludes this paper and discusses
possible future work.

2. Literature review

Tsiligirides (1984) introduced the standard OP that has been proven
to be NP-Hard by Golden et al. (1987). Feillet et al. (2005) and Van
steenwegen and Gunawan (2019) give an overview of the category of
Traveling Salesman Problems with profits, to which OP belongs.
Extensive surveys on the OP and its extensions, solution algorithms and
applications are given by Vansteenwegen et al. (2011) and Gunawan
et al. (2016). The rest of this literature section is devoted to the two most
relevant topics for the current research: the time dependency and vari
able profits for OP variants.

In the OP, it is assumed that the link travel time is a constant value.
However, in many practical situations, it actually depends on the
network conditions, such as transportation mode and traffic congestion
level. This variant of the OP is called the time dependent OP (TDOP) and
is introduced by Fomin and Lingas (2002). Afterward, Li et al. (2010)
and Verbeeck et al. (2014) investigated the TDOP more thoroughly. Li
et al. (2010) used the dynamic programming idea for an optimal labeling
algorithm, which is combined by a mixed integer programming model to
solve the TDOP. However, they did not test their algorithm on bench
mark instances and thus did not propose performance metrics. Verbeeck
et al. (2014) designed a local search based metaheuristic, combined by
an ant colony system and tested it on modified OP instances that consist
of a complete graph with categorized link travel times. For the time
dependent team orienteering problem (TDTOP) several solution algo
rithms have been proposed in the literature. Li (2011) proposed a mixed
integer programming model and an optimal dynamic labeling algorithm
but without testing on test instances and presenting any performance
metrics. Gavalas et al. (2014) and Gavalas et al. (2015) designed various
cluster-based heuristics and tested it on instances created based on the
metropolitan area of Athens.

The TDOPTW adds both time dependency in travel time and time
window constraints on the moment of service to the basic OP. Abbas
pour and Samadzadegan (2011) applied multimodal shortest path
finding modules and two adapted genetic algorithms to the TDOPTW.
Their algorithm is evaluated over datasets derived from the metropol
itan area of Tehran without reporting any performance measure. Ver
beeck et al. (2017) proposed an effective and efficient solution method
by applying the swap and replace local search procedures and based on
the ant colony system with a pre-processing step. This algorithm is
verified by realistic instances that originate from a large road network of
Benelux (Belgium, The Netherlands and Luxembourg) with available
time profiles of link travel times. These instances are the only available
benchmarks for TDOPTW in the literature.

Zenker and Ludwig (2009) introduced the TDTOPTW for the first
time. However, they have not proposed any solution algorithm for the
presented model. They developed a mobile application (ROSE) that
presents recommendations, route generation, and navigation to assist
pedestrians to access vertices Points of Interest (POIs) by public trans
portation. Garcia et al. (2009) and Garcia et al. (2013) designed two
solution algorithms for the TDTOPTW that are applied to real urban test
instances. The first work solved the TDTOPTW as a TOPTW by using the
average travel times between all pairs of POIs. Then, a repair procedure
checks the derived TOPTW solution based on real travel times and
removes some included POIs to provide feasibility conditions. The sec
ond work presented an ILS heuristic which finds a near-optimal solution
in a few seconds. In this work, a tourist can choose between walking and
using public transportation with periodic schedules. The waiting time
for public transport depends on the arrival time to the corresponding
station. As a result, the travel time between POIs depends on the de
parture time at a POI and the transportation mode. Liao and Zheng
(2018) proposed a hybrid heuristic algorithm based on random simu
lation to design a personalized day tour in a time dependent stochastic

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

3

environment. In this situation, various factors such as the weather, the
traffic, the limited capacity of POIs or unforeseen events are stochastic
and time dependent. However, the proposed solution by this work is not
evaluated on benchmark instances and therefore no performance mea
sures are proposed.

The basic assumption in the classical OP and all above-mentioned
variants is that the visit (service) time of vertices is known in advance
and the complete profit is obtained when reaching a vertex. The orien
teering problem with variable profits (OPVP) is another interesting
variant of the OP (Erdoǧan and Laporte (2013) in which the obtained
profit is not fixed. Yu et al. (2019) have classified OPVP into two
streams: (i) the OP with arrival time dependent profits (OPATP), in
which profits depend on the arrival time at each vertex, (ii) the OP with
service time dependent profits (OPSTP), in which profits depend on the
duration of the service time at each vertex. The latter one will be
considered in this paper.

Erkut and Zhang (1996) introduced the OPATP where each vertex
has a linear decreasing profit as a function of its arrival time, and the
goal is to find a single route maximizing the total collected profit. In
their paper, small size instances are solved using an exact branch-and-
cut method, and large size instances are solved using a greedy heuris
tic. An OPATP with multiple tour is introduced by Tang et al. (2007)
where they developed a tabu search with an adaptive memory to solve
instances of the problem. Ekici and Retharekar (2013) introduced the
OPATP with multiple vehicles, and a cluster-first route-second heuristic
is developed by them. Murat Afsar and Labadie (2013) found lower and
upper bounds of the OPATP instances using column generation and
evolutionary local search techniques. Peng et al. (2019) addressed the
agile earth observation satellite scheduling problem as the TDOPTW
with time dependent profits. In this case, the collected profit depends on
the start time. Moreover, time dependency and time windows are added
to the basic OPATP. They proposed a bidirectional dynamic program
ming based iterated local search (BDP-ILS). The performance evaluation
shows that their solution method performs very well.

In the OPSTP problem, one needs to find the route of the vertices to
visit, as well as the proper service time (duration) at each selected
vertex. This problem is firstly considered by Erdoǧan and Laporte (2013)
where they assume that the complete profit at a vertex is gained with
several discrete passes or a continuous amount of time to be spent at that
vertex. They formulated the discrete model as a linear integer pro
gramming problem and the continuous model as a nonlinear integer
programming problem. Then, they provided valid inequalities to
strengthen the formulation for both concave and convex profit collection
functions and developed a unified branch-and-cut algorithm for the two
versions. Pietz and Royset (2013) defined the Generalized Orienteering
Problem with Resource Dependent Rewards (GOP-RDR) where rewards
are collected by visiting each vertex with a concave reward function, and
the reward level depends on the amount of limited resources consumed.
Arcs in the network are passed while expending the same resources used
for reward collection. The path is built up so that the total resource
consumption is within predetermined bounds. They gave a branch and
bound algorithm for their variant of OPSTP that solves a series of convex
partial path relaxations. They developed a heuristic algorithm to start
their branch and bound tree with a high-quality solution, speeding up
the computation. Regardless of differences arising from the various
types of profit function, note that firstly, the OP-STP is a special case of
GOP-RDR (as an extension of GOP) in which time budget is considered
as the limited resource, secondly, the TDOPTW-STP is not a special case
of GOP, due to each of its all 3 crucial properties (TD, TW, and STP), and
also is not a special case of GOP-RDR or OP-STP, due to each of its two
crucial properties (TD, and TW), and on the other hand, TDOPTW-STP is
an extension of TDOPTW and OP-STP.

Guitouni and Masri (2014) studied a search-and-rescue path plan
ning for an aerial search aid in continuous space and time. Their prob
lem is similar to OPVP in the sense that at every vertex the vehicle
gathers a proportion of the profit that is conditioned by the time used on

that vertex. An optimal solution was found for a numerical instance of
ten vertices in 42 min. Yu et al. (2015) have used the OPSTP model for
the tourist trip planning, where an increasing profit function depends on
the duration of stay at each vertex. They used a piecewise linear
approximation for the nonlinear profit function, and used Gurobi to
solve the proposed model, and found near-optimal solutions to the
nonlinear problem. Gunawan et al. (2018) are the first to present a
mathematical programming model for the TOPVP as an extension of the
OPVP discrete model, and developed a solution algorithm based on ILS
proposed by Chao et al. (1996). Their local search moves consist of two-
point exchange, one-point movement, and 2-Opt. For performance
evaluation, the proposed algorithm was run on OPVP benchmark in
stances based on TSP test instances. The authors concluded that the al
gorithm is able to find optimal solutions in considerably shorter
computational time for the small instances and good-quality solutions
that have significantly better objective values than those found by
CPLEX under reasonable run times. Based on Yu et al. (2019), in the
OPSTP problem, the extra decision of assigning appropriate service
times to each selected vertex causes the complexity of designing heu
ristic algorithms for this problem. They conclude that a proper heuristic
should consider that: First, a comprehensive representation of the so
lutions is important; second, since both traveling times and service times
use the common source time (the time budget), they may severely
interact on each other, which causes another difficulty in determining
auspicious solution space regions during the search process. A variant of
the OPSTP with a concave service time function is also addressed by Yu
et al. (2019). They formulated a mixed integer nonlinear programming
model, and developed a matheuristic which decomposes the problem
into two subproblems, of routing and scheduling. Then, a tabu search is
proposed to find feasible solutions for the routing subproblem, and an
exact polynomial time algorithm is designed to optimally solve the
scheduling subproblem, which finds the service times of visited vertices.
Numerical experiments on both random and adapted TSPLIB instances
show the effectiveness of their proposed solution method on instances
with up to 200 vertices.

Another relevant problem in the literature is called the patrol routing
problem (PRP). In the PRP, given a set of patrol cars and a set of hot
spots, the objective is to find patrol cars’ routes maximizing the time that
these cars spend in hot spots. Each hot spot is assigned a time window
and cars receive profits only if they stay at the hot spot within its cor
responding time window. Constant travel times between hot spots are
known, and all cars start and end their shift at the same times and lo
cations (Dewil et al., 2015). Various variants and applications of the PRP
has been studied in Moonen et al. (2007), Takamiya and Watanabe
(2011), Lou et al. (2011), Willemse and Joubert (2012), Keskin et al.
(2012), Chen (2012), Portugal and Rocha (2013), Chircop et al. (2013),
and Dewil et al. (2015). Since the relation between the profit and the
service time is linear, the TDOPTW-STP seems very close to the PRP, but
there are crucial differences. In the PRP, a certain vertex is left only
when it closes or when another vertex with a higher profit rate (collected
profit per time) opens at that moment, but in the TDOPTW-STP, there is
a maximum service time for each vertex. Thus, for a certain visited
vertex, the time of completing the maximum service time has the key
role in determining the departure time while this time for a visited
vertex is not predetermined on the time profile and depends on its
arrival time. Furthermore, in the TDOPTW-STP, there is a nonzero
minimum service time for each vertex while in the PRP, as soon as the
service time is started, the profit is collected. Moreover, profits in the
TDOPTW-STP have a strictly positive offset, unrelated to the profit per
time unit. Due to these properties, the PRP instances can easily be solved
exactly, by modeling the problem as a minimum cost network flow
problem (Dewil et al., 2015). However, this is not applicable to the
TDOPTW-STP.

To the best of authors’ knowledge, the only work which considers
both time dependency and service time dependent profits together in the
OPTW, is a recent conference paper by Gündling and Witzel (2020).

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

4

They studied TDTOPTW with adjustable profits and presented the first
MILP representation of it. In this work, profit is characterized as a linear
function of service time (similar to the work presented in this paper).
Without presenting details about the solution approach, they presented
a fast iterated local search (ILS) that can be used in practical applications
such as a mobile app service for tourists. They claim the practical
feasibility of their approach by applying it on the data taken from the
city of Berlin. In their ILS, the visit time is dealt with discreetly in 5 min
steps. Thus, it seems that it discretely searches the solution space to find
the appropriate service time, while our algorithm in this paper does that
continuously.

In the TDOPTW-STP, time dependent travel times and service time
dependent profits are added simultaneously to the OPTW. In fact, by
integrating routing and scheduling, the user (planner, tourist, or driver)
tries to consume the time budget for visiting vertices and collecting
profit rather than spending the time in the traffic network. Despite its
interesting applications, according to the literature review, this new
variant of the OPTW is not fully addressed. Moreover, although there are
similar problems in the literature, such as PRP and OP-STP, in none of
them lower and upper bounds are imposed on service times and profits
of each vertex. As briefly mentioned earlier, this property makes the
problem even more difficult to solve. In this research, the TDOPTW-STP
with minimum and maximum service times is introduced and mathe
matically modelled. A solution method is implemented, and new in
stances of the problem are generated and solved using the proposed
solution method.

3. Problem description

In this section, the time dependent orienteering problem with time
windows and service time dependent profits (TDOPTW-STP) is mathe
matically defined and formulated as a Mixed Integer Programming
(MIP) model. The proposed TDOPTW-STP can be explained on the set
Vc = {1, ..., n} of vertices. In this set, vertex 1 represents the start depot,
and vertex n is the end depot. We assume all vertices i and j in Vc are
connected by an arc (i, j). Each vertex i ∈ Vc is assigned a non-negative
minimum profit, pmin

i , and a maximum profit, pmax
i . The effective profit

is obtained by visiting the vertex i for a time length of si units between its
opening time oi and its closing time ci + smin

i , where smin
i is the minimum

required service time to earn the minimum profit of vertex i. The start
time of a service at vertex i can only happen within its time window and
the end time of service at each vertex i may not exceed ci + smin

i . This
implies that if you start a service at time ci, only the minimal profit can
be collected. As presented in Fig. 3.1, the service time for vertex i (si) is a
continuous variable between smin

i and smax
i , and the profit of vertex i (pi)

is a continuous variable depending on si and resides between pmin
i and

pmax
i . A set of linear equations, presented in Eqs. (3-1) to (3-3), is used to

formulate the relationship between pi and si. Note that, when the MINLP
is presented, pi is effectively eliminated from the mathematical model of
TWOPTD-STP by using these equations. Finally, the corresponding
profit and service time for the start and the end depot is set equal to 0.

pi = ai.si + bi (3-1)

ai =
(
pmax

i − pmin
i

)/(
smax

i − smin
i

)
(3-2)

bi = pmin
i − ai.smin

i (3-3)

Similar to the TDOPTW proposed by Verbeeck et al. (2017), it is
assumed that a visit day is divided in k time slots. Furthermore, it is also
assumed that ltst and utst indicate the minute when time slot t starts and
ends respectively. Afterwards, according to these time slots and their
related travel times for each arc (ttij,ltst), the linear travel time factors for
each arc μijt and ϑijt can be found using the following equations:

μijt =
(
ttij,utst − ttij,ltst

)/
(utst − ltst) (3-4)

ϑijt = ttij,ltst − μijt.ltst (3-5)

Having these coefficients, the travel time from i to j, when departing
at time wijt in time slot t (ltst ≤ wijt ≤ utst), is calculated as follows:

ttijt = μijt.wijt +ϑijt (3-6)

In the TDOPTW-STP, the objective is to find a route (solution) which
starts and ends in the given depots, and visits a number of vertices to
maximize the total collected profit while satisfying a given time budget.
Based on this definition, two mathematical models are presented. The
first one is a Mixed Integer NonLinear Programming (MINLP) and the
second one is its corresponding linear version (MILP) where in both of
them the service time is considered as a continuous variable. Decision
variables and parameters of the presented MIP models are listed below.
Decision variables

xijt 1 if arc (i, j) is traversed with a departure time in time slot t by the route,
0 otherwise

wijt departure time from i to j in time slot t
sj service time of vertex j

Parameters

smin
j minimum service time of vertex j

smax
j maximum service time of vertex j

pmin
j minimum profit of vertex j

pmax
j maximum profit of vertex j

aj slope coefficient of the linear profit
bj intercept coefficient of the linear profit
ttijwijt the travel time from vertex i to vertex j, when departing at time wijt in time

slot t
μijt slope coefficient of the linear time dependent travel time
ϑijt intercept coefficient of the linear time dependent travel time
ltst start of time slot t
utst end of time slot t
n number of vertices
k number of time slots
oi opening time of vertex i
ci closing time of vertex i
cn closing time of end depot

The TDOPTW-STP is modelled as a MINLP model as follow.

Max
∑n− 1

i=1

∑n

j=2

∑k

t=1

[(
aj.sj + bj

)
.xijt

]
(3-7)

∑n

j=1
x1j1 =

∑n− 1

i=1

∑k

t=1
xint = 1 (3-8)

Fig. 3.1. The profit of a vertex as a linear function of service time.

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

5

∑n− 1

i=1

∑k

t=1
xiht =

∑n

j=2

∑k

t=1
xhjt ≤ 1;∀h = 2,⋯, n − 1 (3-9)

xijt.ltst ≤ wijt; i = 1,⋯, n − 1, j = 2,⋯, n, ∀t (3-10)

wijt ≤ xijt.utst; i = 1,⋯, n − 1, j = 2,⋯, n, ∀t (3-11)

∑n− 1

i=1

∑k

t=1
[wiht + μiht.wiht +ϑiht.xiht + sh.xiht] ≤

∑n

j=2

∑k

t=1
whjt;∀h = 2,⋯, n − 1

(3-12)

∑n− 1

i=1

∑k

t=1
[wint + μint.wint +ϑint.xint] ≤ cn (3-13)

∑n− 1

i=1

∑k

t=1
[oh.xiht + sh.xiht] ≤

∑n

j=2

∑k

t=1
whjt;∀h = 2,⋯, n − 1 (3-14)

∑n

j=2

∑k

t=1
whjt ≤

∑n− 1

i=1

∑k

t=1

(
ch + smin

h

)
.xiht; ∀h = 2,⋯, n − 1 (3-15)

smin
j .

∑n− 1

i=1

∑k

t=1
xijt ≤ sj ≤ smax

j .
∑n− 1

i=1

∑k

t=1
xijt; ∀j = 2,⋯, n (3-16)

w1i1 = 0; ∀i = 1,⋯, n (3-17)

xijt ∈ (0, 1); ∀i, j, t (3-18)

wijt ∈ [0, tmax]; ∀i, j, t (3-19)

The objective function (3-7) maximizes the total collected profit.
Constraint (3-8) ensures that vertex 1 and vertex n are the start and end
points of the route, respectively. Constraints (3-9) guarantee that each
vertex is visited at most once, and ensure the flow balance of the route.
Constraints (3-10) and (3-11) specify the departure time in the appro
priate time slot required to multiply with its related μ and ϑ in Con
straints (3-12) and (3-13). Constraints (3-12) make sure that the
departure time of the next vertex in the route is larger than or equal to
the sum of the departure time of the previous vertex together with the
service time and the travel time. Constraint (3-13) ensures that the
arrival time to vertex n is not exceeding its closing time. Note that the
time budget (tmax) is equal to the difference between the closing time of
the end depot and the opening time of the start depot (cn − o1). So, if the
opening time of the start depot is set equal to zero (o1 = 0), the time
budget will be equal to the closing time of the end depot (tmax = cn).
Constraints (3-14) make sure that at each vertex except from the start
and the end depot, the departure time does not happen before the
opening time plus the service time. Constraints (3-15), ensure that the
departure time is not greater the sum of the closing time and the mini
mum service time of the vertex. Constraints (3-16) ensure that the ser
vice time at each visited vertex is between its minimum and maximum
service time (smin

i and smax
i). Moreover, without loss of generality, Con

straints (3-17) ensure that the start time of the route is at time zero and
there is no waiting at the start depot.

In comparison with TDOPTW, the difference is in the objective
function and Constraints (3-12), (3-14), (3-15) and (3-16). Note that
because of using sj.xijt in Eqs. (3-7), (3-12), and (3-14), this problem is
modelled as a nonlinear problem.

3.1. Linearization

To linearize and solve the model using the linear solver CPLEX,
auxiliary variables dijt are defined as Eq. (3-20). So that dijt equals to sj if
xijt = 1, and 0, otherwise.

dijt = sj.xijt; ∀i, j, t (3-20)

Using auxiliary variables dijt, a MILP model is developed in which
nonlinear Eqs. (3-7), (3-12), and (3-14) are linearized by using Eqs. (3-
21) to (3-27). Note that in this MILP, M is a large enough number and its
value is set as the upper bound of the continuous and non-negative

variable sj (Max
{

smax
j ; j = 2,⋯, n

}
).

Max
∑n− 1

i=1

∑n

j=2

∑k

t=1

[
aj.dijt + bj.xijt

]
(3-21)

∑n− 1

i=1

∑k

t=1
[wiht + μiht.wiht + ϑiht.xiht + diht] ≤

∑n

j=2

∑k

t=1
whjt; ∀h = 2,⋯, n − 1

(3-22)

∑n− 1

i=1

∑k

t=1
[oh.xiht + diht] ≤

∑n

j=2

∑k

t=1
whjt;∀h = 2,⋯, n − 1 (3-23)

dijt − sj ≤ 0; i = 1,⋯, n − 1, j = 2,⋯, n,∀t (3-24)

dijt ≤ M.xijt; i = 1,⋯, n − 1, j = 2,⋯, n,∀t (3-25)

sj − dijt +M.xijt ≤ M; i = 1,⋯, n − 1, j = 2,⋯, n, ∀t (3-26)

dijt ∈
(
0, sj

)
; ∀j, j, t (3-27)

Consequently, in the presented MILP model for the TDOPTW-STP,
the objective function is Eq. (3-21), and the constraints are Eqs. (3-8)
to (3-11), (3-13), (3-15) to (3-19) and, (3-22) to (3-27).

4. Proposed solution algorithm

Due to the NP-hardness of the TDOPTW-STP, commercial solvers like
CPLEX can only solve it for small instances. Furthermore, state of the art
methods cannot tackle it because of the variable service time. So, it is
necessary to develop an efficient solution method for the TDOPTW-STP.
This section of the paper describes the proposed metaheuristic
algorithm.

4.1. General structure of the algorithm

Several metaheuristic methods have been presented in the literature
to solve various extensions of the OP. Based on the literature, combining
Variable Neighborhood Search (VNS) or Variable Neighborhood Descent
(VND) with other metaheuristic algorithms were one of the most
commonly used approaches due to their favorable results (Divsalar
et al., 2013, Paydar and Saidi-Mehrabad, 2013, Dib et al., 2017, Divsalar
et al., 2014). The major characteristic that makes a VND-based meta
heuristic effective for OP variants is the simplicity and flexibility of this
framework. Very few parameters needs to be set and various neigh
borhood structures can be handled (Divsalar et al., 2013). This latter
characteristic of the VND makes it handy to apply both profit increasing
and time saving moves simultaneously (Vansteenwegen and Gunawan,
2019). This property has been used to design and apply specific local
search moves, which try to find a good order of visits together with the
corresponding visit times.

The proposed algorithm is based on the variable neighborhood
search (VNS). The general structure of the proposed VNS algorithm is
illustrated in Algorithm 4.1. The algorithm begins with an Initialization
phase, described in Section 4.2. Then, an improvement phase is imple
mented iteratively which is described in Section 4.3. NoImprovement
counts the number of subsequent iterations without improvement and is
limited by MaxNoImprovement as the stopping criterion of the algorithm.
MaxNoImprovement is one of the input parameters that is predetermined

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

6

when tuning this VNS.
Algorithm 4.1 Pseudo code for the VNS

1: Initialization phase: (Section 4.2)
2: Preprocessing
3: S0 ← GenerateInitialSolution;
4: S* ←VND (S0);
5: Improvement phase: (Section 4.3)
6: while NoImprovement < MaxNoImprovement do
7: S1 ← Shake (S*); (Section 4.3.1)
8: S2 ← VND (S1); (Section 4.3.2)
9: S* ←Recentering (S*, S2); (Section 4.3.3)
10: end while
11: return S*

To solve a TDOPTW-STP instance, the main decisions are to determine
the vertices to visit, and the corresponding departure times and service
times. The combination of time dependent travel time and variable
service time is the new challenging part of the TDOPTW-STP. This is
mainly because in the presence of time dependent travel times, the se
lection of different service times significantly affects the whole route.
Therefore, to deal with this challenge, the proposed VNS contains new
contributions compared to the literature. These algorithmic extensions
and adaptations are explicitly mentioned in each related section.

4.2. Initialization phase

This phase includes three steps: Preprocessing, Gen
erateInitialSolution and VND. Similar to the TDOPTW proposed by
Verbeeck et al. (2017), a sorted set of nearest neighbors is identified for
each vertex i in the preprocessing step. So firstly, for each vertex i, a list
of neighbors is defined as a set of vertices j if Eq. (4-1) holds.

oi + smin
i + ttmin

ij ≤ cj (4-1)

where, ttmin
ij is the minimum time dependent travel time on arc (i,j). This

equation guarantees that it is feasible to arrive to vertex j before the
closing time when leaving at the earliest possible departure time at
vertex i.

Unlike the proposed solution algorithm for the TDOPTW by Ver
beeck et al. (2017), preliminary experiments showed that pre-sorting
neighbors in these lists does not lead to finding higher quality solu
tions or reducing the computational time. These results are included in
Appendix A. In fact, the combination of time dependency and variable
service times makes this pre-sorting useless, and it is very likely that
vertices with lower rank are present in the optimal solution.

In the second step, GenerateInitialSolution is performed to produce
an initial solution (S0). This step starts with an empty solution that in
cludes only the start and the end depot. Then, it tries to add, vertices
(with their minimum service time) to the solution one by one, based on
the nearest neighbor strategy in terms of NSR (stands for Node Selection
Ratio) as defined in Eq. (4-2).

NSR =

{
dprofit2/dtime; dtime > 0

(1 − dtime).dprofit2; dtime ≤ 0 (4-2)

where, dprofit is equal to minimum profit of the neighbor that might be
inserted, and dtime is the change in the total travel time of the route if the
insertion happens. Note that the triangle inequality property might be
violated in time dependent OP (Verbeeck et al., 2014) which implies
that we might have a negative dtime by visiting an extra vertex or a
positive dtime by removing an included vertex. Therefore, in a time
dependent OP the feasibility should be controlled even when one vertex
is removed from the solution.

If the travel time increases, NSR is set equal to dprofit2/dtime. This

means that the more profit and the less travel time, the more promising
an insert becomes. Moreover, the square of the profit is applied in NSR
calculation to give more importance to profit than to travel time.
Furthermore, if the travel time decreases or stays the same, NSR is set
equal to (1 − dtime).dprofit2. This means that as dtime becomes more and
more negative, (1 − dtime) becomes more and more positive, thus arti
ficially increasing the NSR. The purpose is to give vertices that will
shorten the route, an advantage upon vertices that will lengthen the
route.

Finally, the variable neighborhood descent (VND) is executed on the
initial solution to generate the best solution (S*). VND is described in the
following subsections.

4.3. Improvement phase

In this phase, three steps are implemented, iteratively. Firstly, the
vertices in the current solution are shaken. The algorithm implements
the shake as the diversification procedure to better explore the whole
solution space. Secondly, a VND with various local search moves is
applied. The algorithm uses VND as the intensification procedure. Af
terwards, in the recentering step, it is decided from which solution the
next iteration should start. In designing the proposed method to achieve
an excellent balance between diversification and intensification during
the search for the best solution, both aspects of vertex and service time
selection are considered.

4.3.1. Shake
VNS escapes from local optima using a shaking phase. In this step,

the shake proposed by Vansteenwegen et al. (2009) for TOPTW is
adapted for the TDOPTW-STP and presented in Algorithm 4.2. During
this phase, one or more included vertices will be removed from the
current solution. This Shake has two input parameters; the first remove
position (POSshake) and the number of consecutively included vertices to
remove (Nshake) in the current solution. For the first iteration, POSshake
and Nshake are initialized to one. Note that in this algorithm, when
vertices are removed, because of the time dependency, the solution
feasibility is re-checked (line 8). Moreover, every recalculation and
updating of time variables such as travel times and MaxShift are adopted
according to time dependency.

In our algorithm, at the end of each iteration, POSshake is increased by
Nshake, and Nshake is increased by one. As a result, throughout the itera
tions, different parts of the solution, with different number of vertices,
will be maintained and removed. If the number of vertices in the solu
tion is lower than 4 (including the start and the end depot), POSshake and
Nshake are reset to one. If POSshake or Nshake is higher than the number of
vertices in the solution, it is reset to one.

Algorithm 4.2 Pseudo code for Shake

1: Remove Nshake included vertices from POSshake to POSshake + Nshake-1 in current
solution;

2: for included vertex (exactly) before POSshake do
3: Recalculate ttijdt;
4: end for
5: for each included vertex at and after POSshake do
6: Recalculate at, wt, sst, dt, ttijdt;
7: end for
8: if remove is feasible then
9: for each included vertex after POSshake do
10: Update MaxShift;
11: end for
12: for each included vertex at and before POSshake do
13: Calculate MaxShift;
14: end for
15: end if

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

7

4.3.2. VND
Three local search moves are used in the VND part of the algorithm.

The pseudo code for the VND is shown in Algorithm 4.3. In this local
search procedure, the general idea in each iteration is to first insert a
higher number of vertices with short service time and then prolong the
service time and or replace vertices if it improves the solution. In an
overview, the VND starts with Insert-minS which tries to increase the
total profit by adding a new vertex with its minimum service time. This
move is designed to intensify the solution by spending time on adding an
extra vertex rather than increasing service times at visited vertices. The
VND continues with a Swap move that attempts to decrease the total
travel time by exchanging two included vertices without any changes in
their service times. Finding the shortest route between the included
vertices is not an explicit part of the OP objective. However, the shorter
the route, the more likely it is that extra vertices can be added or the
service time of the included ones can be prolonged. Finally, VND per
forms a Replace move that endeavors to increase the total profit by
removing at least one included vertex and adding at least one new vertex
with its most appropriate service time. This move itself is composed of
multiple neighborhood structures designed to intensify the solution by
finding both proper vertices and service times simultaneously. A visual
overview of each local search move is provided in Fig. 4.1. In the
following, an explanation of each move is presented.

Algorithm 4.3 Pseudo code for VND

1: Set of 3 neighborhood structures (Nj): Insert-minS, Swap, Replace
2: j ← 1;
3: while j ≤ 3 do
4: S2 ← Apply neighborhood structure Nj on S1
5: if S2 is better than S1 then
6: S1 ← S2;
7: j ← 1;
8: else
9: j ← j + 1;
10: end if
11: end while
12: return S2

4.4. Insert-minS and Swap

The basic structure of these two moves are taken from Verbeeck et al.
(2017) and adapted for the TDOPTW-STP. The pseudo codes for Insert-
minS and Swap are shown in Algorithm 4.4 and Algorithm 4.5,
respectively. Insert-minS tries to add a new vertex to a position (pos) in
the current solution in the best improvement manner while Swap at
tempts to exchange two included vertices using the first improvement
manner. Note that in Insert-minS, the minimum service time is used for
each inserted vertex, and in Swap, the corresponding service time re
mains unchanged. For more details, we refer to Verbeeck et al. (2017).

Algorithm 4.4 Pseudo code for Insert-minS

1: for each non-included neighbor (vertex i) with minimum service time do
2: for each position in the current solution (pos) do
3: if Insert vertex i at pos is feasible then
4: Calculate NSR;
5: end if
6: end for
7: end for
8: (sel_i,sel_pos) ← Determine the best (i,pos) with highest NSR
9: Execute Insert for (sel_i,sel_pos);
10: for the included vertex (exactly) before sel_pos do
11: Recalculate ttijdt;
12: end for
13: for each included vertex at and after sel_pos do
14: Recalculate at, wt, sst, dt, ttijdt;
15: end for
16: for each included vertex after sel_pos do
17: Update MaxShift;
18: end for
19: for each included vertex at and before sel_pos do
20: Calculate MaxShift;
21: end for

Fig. 4.1. Overview of local search moves.

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

8

Algorithm 4.5 Pseudo code for Swap

1: for each position in the current solution (pos1) do
2: for each successor position in the current solution (pos2;pos2 > pos1) do
3: if Swap vertices at pos1 and pos2 is feasible then
4: Calculate dtime;
5: if dtime < 0 then
6: (sel_pos1,sel_pos2) ← Select pos1 and pos2;
7: Break;
8: end if
9: end if
10: end for
11: if dtime < 0 then
12: Break;
13: end if
14: end for
15: Execute Swap for (sel_pos1, sel_pos2);
16: for included vertex (exactly) before sel_pos1 do
17: Recalculate ttijdt;
18: end for
19: for each included vertex at and after sel_pos1 do
20: Recalculate at, wt, sst, dt, ttijdt;
21: end for
22: for each included vertex after sel_pos2 do
23: Update MaxShift;
24: end for
25: for each included vertex at and before sel_pos2 do
26: Calculate MaxShift;
27: end for

After executing a move, it is required for some included vertices to
recalculate their arrival time (at), start of service time (sst), waiting time
(wt), departure time (dt), and travel time to successor (ttijdt). In the
pseudo codes, this step is called “Recalculate” followed by the time
parameter.

Vansteenwegen et al. (2009) defined MaxShift as “the maximum time
that the service time completion of a given visit can be delayed, without
making any visit infeasible”. For TDOPTW, Verbeeck et al. (2017) pro
posed a backward algorithm for calculation of MaxShift which we call
“Calculate MaxShift”. Furthermore, they proposed the following formula
to “Update MaxShift” for a specific vertex i.

MaxShiftnew
i = MaxShiftprevious

i +(dtprevious
i − dtnew

i) (4-3)

MaxShift is being used in every local move, wherever an insertion is
evaluated for feasibility. Keeping track of MaxShift allows to locally
evaluate the impact of local search moves. This significantly reduces the
required calculation time. In our algorithm for TDOPTW-STP, MaxShift
of an included vertex is calculated without changing the service time of
the succeeding vertices and indicates the time that is available for
increasing its service time or inserting a new vertex into route, without
turning the solution infeasible.

4.5. Replace

Algorithm 4.6 illustrates the pseudo code for Replace. This local
search move first removes Nr vertices from the current solution, and
then inserts as many vertices as possible in the solution, one by one. In
fact, a combination of Nr removed vertices and a list of candidate
vertices for insertion together with their best possible insertion position
as well as their corresponding service time is called a feasible combi
nation. The feasible combination with the highest dprofit will be
executed as the best feasible combination. This process is called
“Determine the feasible Replace” in this pseudo code and is presented in
detail in Algorithm 4.7. After execution of the move, at, sst, wt, dt, ttijdt
and MaxShift for all included vertices are recalculated. For each Nr from
1 to Nrmax, the Replace is performed based on the best improvement
strategy where Nrmax is an input parameter of the algorithm and has to

be predetermined.
Algorithm 4.6 Pseudo code for Replace

1: for Nr = 1 to Nrmax do
2: for pos1 = 2 to SolSize-Nr (in the current solution) do
3: Determine the feasible Replace for (Nr,pos1);
4: Calculate dprofit;
5: end for
6: sel_pos1 ← Determine the best (pos1) with highest dprofit > 0;
7: Execute Replace for (Nr,sel_pos1);
8: end for
9: for each included vertex do
10: Recalculate at, wt, sst, dt, ttijdt;
11: Calculate MaxShift;
12: end for

In Algorithm 4.7, first, Nr consecutive included vertices are removed
from a predetermined place within the current solution, and then, as
many non-included vertices as possible are inserted, while the best
service time combination is considered. Note that in this algorithm,
when Nr vertices are removed, because of the time dependency, the
solution feasibility is re-checked (line 8). Moreover, the way that a
neighbor vertex is selected for insertion in Replace (Insert-varS; line 16)
is different to the Insert-minS move in terms of considering the variable
service time. The details of Insert-varS are shown in Algorithm 4.8.

Algorithm 4.7 Pseudo code for “Determine the feasible Replace” for (Nr,pos1)

1: Remove Nr included vertices from pos1 to pos1 + Nr-1 in current solution;
2: for included vertex (exactly) before pos1 do
3: Recalculate ttijdt;
4: end for
5: for each included vertex at and after pos1 do
6: Recalculate at, wt, sst, dt, ttijdt;
7: end for
8: if remove is feasible then
9: for each included vertex after pos1 do
10: Update MaxShift;
11: end for
12: for each included vertex at and before pos1 do
13: Calculate MaxShift;
14: end for
15: while more improvement is possible do
16: Insert-varS;
17: end while
18: end if

In the Insert-varS (Algorithm 4.8), the service time for each candidate
vertex is selected between its minimum and maximum possible values
by FindBestS (Algorithm 4.9). For each solution, the insertion position
and the selected vertex for insertion, it is first checked if insertion with
the minimum service time is feasible, afterwards, an attempt is made to
find the maximum feasible service time for the considered vertex.

Algorithm 4.9 shows the details on how service times are set when a
vertex is considered for insertion. According to this algorithm, If vertex r
is considered for insertion between vertices i and j, the FindBestS per
forms the following steps to find the best possible service time for vertex
r.

a. Define at1
j as the latest possible arrival time to j, which equals

atj +wtj +MaxShiftj representing the arrival time, waiting time and

MaxShift of j in the current solution, respectively. So, dt1
r is the latest

departure time of r, calculated based on at1j by using a backward
calculation process (calculate_departure_time introduced by Ver
beeck et al. (2017)). Note that if dt1r is larger than cr + smin

r , cr +smin
r is

assigned to it.
b. It is checked if the insertion of vertex r with sr = smin

r is feasible. If not,
the process stops and the next vertex will be evaluated for insertion.
Otherwise, it is checked if the insertion of vertex r with sr = smax

r is
feasible.

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

9

c. If the insertion of vertex r with sr = smax
r is feasible, the smax

r is
selected as the service time of r and the process stops. Otherwise, to
find the best feasible service time (smin

r ≤ sr < smax
r), the following

steps are iteratively performed.
I. During this step, based on the insertion of r with service time sr, first,

the new arrival time of vertex j (at2
j), and then, the new departure

time (dt2r) are calculated. The change in the arrival time of the vertex
j because of this insertion is called shiftj (introduced by Van
steenwegen et al. (2009)). The shiftj will be used in the feasibility
check.

II. In this step, sr is updated to sr + dt1r − dt2r . Note that, dt1r ≤ dt2r . If sr is
less than smin

r , it is set equal to smin
r . Then, with this sr, the feasibility of

insertion is checked again. These steps are repeated until a feasible sr
is found.

In addition, in order to clarify the procedure, the corresponding
flowchart and a numerical example with arbitrary values can be found in
Appendix B.

Algorithm 4.8 Pseudo code for Insert-varS

1: for each non-included neighbor vertex (i) do
2: for each position in the current solution (pos) do
3: (sel_st) ← Execute FindBestS to Determine the best feasible service time for vertex

(i);
4: Calculate NSR;
5: end for
6:end for
7: (sel_i,sel_pos,sel_st) ← Determine the best (i,pos,sel_st) with highest NSR
8: Execute Insert for (sel_i,sel_pos,sel_st);
9: for included vertex (exactly) before sel_pos do
10: Recalculate ttijdt;
11: end for
12: for each included vertex at and after sel_pos do
13: Recalculate at, wt, sst, dt, ttijdt;
14: end for
15: for each included vertex after sel_pos do
16: Update MaxShift;
17: end for
18: for each included vertex at and before sel_pos do
19: Calculate MaxShift;
20: end for

Algorithm 4.9 Pseudo code for FindBestS (for Insert r between i and j)

1: at1j ←atj + wtj + MaxShiftj
2: dt1r ← calculate_departure_time (at1j)
3: if (dt1r > cr + smin

r) then
4: dt1r ←cr + smin

r
5: end if
6: if insert r with sr = smin

r is feasible then
7: sr ←smax

r
8: while insert r with sr is not feasible then
9: Calculate shiftj
10: at2j ←atj + shiftj
11: dt2r ← calculate_departure_time (at2j)
12: sr ←sr + dt1r − dt2r
13: If (sr < smin

r) then
14: sr ←smin

r
15: end if
16: end while
17: end if

4.5.1. Recentering
Each time the shaking and the VND steps are performed, the algo

rithm compares the current solution with the best solution obtained so
far. If the current solution is better than the best found solution, the
recentering phase is performed and the best solution is replaced by the
current solution, and the NoImprovement is initialized to 0. Otherwise,
NoImprovement is increased by 1.

5. Results and discussion

In this section, the performance of the proposed VNS is analyzed
using various numerical experiments. Since no test instances are avail
able for the TDOPTW-STP, in Section 5.1, two different sets of instances
are generated based on the TDOPTW benchmark instances. In Section
5.2, first, the set of input parameters of the proposed algorithm are
tuned, and then, the results of the VNS are evaluated over TDOPTW
instances and the generated TDOPTW-STP instances with known
optimal (best) solutions. In Section 5.3, a real-world data set from the
city of Shiraz (Iran) is used to show the applicability and suitability of
the proposed problem and solution method. All generated instances
including Sets 1 and 2, as well as real data instance of Shiraz are
available online at https://www.mech.kuleuven.be/en/cib/op/

5.1. Test instances

Verbeeck et al. (2017) created 36 benchmark instances with 20, 50
and 100 vertices for the TDOPTW with an optimal (best known) solution
available at https://www.mech.kuleuven.be/en/cib/op/. In this sec
tion, two sets of instances are generated. In the first set (Set 1), TDOPTW
instances with 20 vertices and 56 time slots are used. For these instances,
opening times, closing times, the time dependent travel times, and time
budget are retained. Then, to create the variable profit properties, for
each vertex, the current service time and profit are used as the minimum
service time (smin

i) and the minimum profit (pmin
i). The maximum service

time (smax
i) and profit (pmax

i) are then generated by applying two random
coefficients between 1 and 2 multiplied by the corresponding smin

i , and
pmin

i . Using this process, some small instances (up to 20 vertices and up to
56 time slots) are developed for the TDOPTW-STP and solved to opti
mality using the implemented mathematical model in CPLEX.

In the second set (Set 2), a procedure is designed to generate
TDOPTW-STP instances based on TDOPTW instances so that their
optimal (best known) solution becomes the optimal solution for the
TDOPTW-STP. The pseudo code for this procedure is presented in Al
gorithm 5.1. In this procedure, in the first step, for each vertex, the
deterministic service time, and profit of the vertex in the TDOPTW
instance is set as the maximum of service time (smax

i) and the maximum
profit (pmax

i), respectively and then all vertices are divided into two
parts: The ones included in the optimal (best known) sequence, and the
non-included ones. The main idea is to first keep the optimal (best
known) solution of the TDOPTW feasible for the TDOPTW-STP and then
to force the rest of vertices in an unattractive situation (lower profit,
higher minimum service time, and lower linear profit coefficient) where
generating a new solution with higher profit would not be possible. It
should be noted that, however, in the case of having only a best known
solution for the TDOPTW (and not an optimal one) in hand, it is always
possible to find a better sequence of vertices also for the TDOPTW-STP.

In the second step, for each included vertex, by selecting two random
factors between 0 and 1 (rand1 and rand2), and multiplying them with
the corresponding smax

i , and pmax
i , the minimum service time (smin

i) and
the minimum profit (pmin

i) is generated. Furthermore, for each vertex,
the slope coefficient of the linear profit (ai) is calculated by dividing the
pmax

i − pmin
i over smax

i − smin
i . Then, the minimum value of the set of the

minimum profits over all vertices (min_pmin), the maximum value of the
set of the maximum service times over all vertices (max_smax), and the
minimum value of the set of the slope coefficient of the linear profits
over all vertices (min_a) are calculated. At last, it is necessary to adapt
the closing time of vertices for the ones included in the optimal (best
known) solution. So, for each included vertex, the closing time of the
vertex in the TDOPTW instance plus smax

i − smin
i is set as the closing time

of each included vertex. For example, for included vertex r, if cr = 20,
smax
r = 3, and smin

r = 1, closing time of vertex r will be 22 in Set 2. Note
that due to constraint (3-29), if cr would remain 20, the TDOPTW so
lution might become infeasible for TDOPTW-STP. So far, we make sure

M. Khodadadian et al.

https://www.mech.kuleuven.be/en/cib/op/
https://www.mech.kuleuven.be/en/cib/op/

Computers and Operations Research 143 (2022) 105794

10

that the optimal solution of the TDOPTW instance remains feasible for
the TDOPTW-STP.

In the third step, for each non-included vertex, the minimum value of
{ pmax

i , rand3i* min_pmin } in which, rand3 is again a random factor be
tween 0 and 1, is assigned to vertex i as its corresponding pmax

i . Then, the
minimum profit (pmin

i) is calculated, as the result of a new random factor
between 0 and 1 (rand4) multiplied by pmax

i . Furthermore, the maximum
value of { smax

i , rand5i* max_smax } in which, rand5 is a new random
factor greater than 1, is assigned to smin

i that is greater than max_smax
value. Then, by using another random factor between 0 and 1 (rand6),
and multiplying it with the min_a value, the slope coefficient (ai) is
created in order that it stays lower than min_a value. Finally, according
to the generated smin

i , pmax
i , pmin

i , and ai, the corresponding smax
i is

calculated.
Our motivation for this procedure is to keep the pmax

i and ai values of
non-included vertices lower than the min_pmin and the min_a values, and
keeping the smin

i value of non-included vertices higher than the max_smax
value, and therefore to make the non-included vertices not interesting
enough to be selected in the TDOPTW-STP optimal solution.

Algorithm 5.1 Pseudo code for generating Set 2

1: for each vertex i do
2: smax

i ←si;
3: pmax

i ←pi;
4: end for
5: Determine included vertices and non-included vertices in TDOPTW optimal

(best known) solution;
6: for each included vertex i do
7: Generate random numbers:
8: 0 < rand1i < 1;
9: 0 < rand2i < 1;
10: Calculate:
11: smin

i = rand1i*smax
i →0 < smin

i < smax
i ;

12: pmin
i = rand2i*pmax

i →0 < pmin
i < pmax

i ;
13: ai =

(
pmax

i − pmin
i

)/(
smax
i − smin

i
)
;

14: ci ←ci + smax
i − smin

i ;
15: end for
16: for all included vertices do
17: Calculate:
18: max_smax = max { smax

i };
19: min_pmin = min { pmin

i };
20: min_a = min {ai};
21: end for
22: for each non-included vertex i do
23: Generate random numbers:
24: 0 < rand3i < 1;
25: 0 < rand4i < 1;
26: rand5i > 1;
27: 0 < rand6i < 1;
28: Calculate:
29: pmax

i = min { pmax
i , rand3i* min_pmin } → 0 < pmax

i < min_pmin;
30: pmin

i = rand4i* pmax
i → 0 < pmin

i < pmax
i ;

31: smin
i = max { smax

i, rand5i* max_smax } → max_smax < smin
i ;

32: ai = rand6i* min_a → 0 < ai < min_a;
33: smax

i = smin
i +

[(
pmax

i − pmin
i

)/
ai
]
;

34: end for

5.2. Numerical experiments

The proposed algorithm is implemented in Visual C++ 2010 and the
experiments are performed using a laptop with Intel Core i7 CPU M 640
@ 2.80 GHz processor and 8.00 GB Ram. In the proposed algorithm,
there exist 2 input parameters for tuning: MaxNoImprovement and Nrmax.
In order to determine these parameters, a number of primary tests are
done. Firstly, 14 instances are randomly selected from Sets 1 and 2 of the
TDOPTW-STP, and for each of the parameters, three different values are
determined (MaxNoImprovement = n/3, n/4, n/5 and Nrmax = 1, 2, 3).
Then, the algorithm is applied on the selected set for all 9 possible
combinations of different values of parameters, and the appropriate
combination is chosen based on a balance between solution quality and

the computation time. As a result, the parameters are set as follow:
MaxNoImprovement = n/5 and Nrmax = 2.

The first set of experiments is performed on the TDOPTW set of
Verbeeck et al. (2017). Our proposed method is compared with the re
sults of the Ant Colony System (ACS) by Verbeeck et al. (2017). The
results are displayed in Table 5.1. In this table, the first column gives the
instance names. The second and third columns show the results of the
ACS. Contrary to our VNS, the ACS contains randomness. Therefore, we
run our method only once, and compare the results to the average results
of the ACS. Moreover, to have a fare comparison of CPU times, the ACS
code is rerun on the same system configuration as our VNS is run. Thus,
due to the existing randomness as well as improvement in the ACS, the
presented results in this table are slightly different from the ones pre
sented in Verbeeck et al. (2017). The fourth to sixth columns show the
results of the proposed VNS.

The profit gap is presented as 100* (ACS profit - VNS profit) / ACS
profit, and the CPU shows the computation time in seconds. Note that for
running the VNS on this set, we set smax

i = smin
i = si and pmax

i = pmin
i = pi.

It should be noted that, the VNS is designed to solve the TDOPTW
problem when the service time is not fixed and the profit depends on the
duration of stay at each vertex (TDOPTW-STP), and, our algorithm is
tuned for the TDOPTW-STP. However, our aim is to compare the pro
posed method over the TDOPTW problem to show that the performance
of the proposed VNS is acceptable for this problem.

Looking at the results, it can be seen that in total, for 36 instances of
TDOPTW, in 10 instances, the gap is zero. The VNS could improve the
best known results in 2 instances, and in 24 instances the ACS gives
better results. Furthermore, the average and maximum gaps are 2.5 and

Table 5.1
Detailed results of solution algorithms on TDOPTW set.

Instance ACS VNS

Profit CPU (Sec) Profit Profit gap (%) CPU (Sec)

20.1.1 159 0.1 159 0.0 0.01
20.1.2 173 0.1 173 0.0 0.01
20.1.3 184 0.1 184 0.0 0.01
20.2.1 188 0.1 188 0.0 0.02
20.2.2 201 0.1 195 3.0 0.01
20.2.3 195 0.1 179 8.2 0.01
20.3.1 277 0.1 253 8.7 0.01
20.3.2 246 0.1 246 0.0 0.03
20.3.3 259 0.1 259 0.0 0.04
20.4.1 274 0.1 262 4.4 0.02
20.4.2 275 0.2 258 6.2 0.02
20.4.3 268 0.1 255 4.9 0.01
50.1.1 288 0.2 279 3.1 0.04
50.1.2 274 0.2 274 0.0 0.05
50.1.3 289 0.3 289 0.0 0.05
50.2.1 298 0.3 298 0.0 0.10
50.2.2 310 0.3 291 6.1 0.13
50.2.3 340 0.4 340 0.0 0.13
50.3.1 339 0.3 326 3.8 0.11
50.3.2 404 0.4 374 7.4 0.09
50.3.3 366 0.5 362 1.1 0.29
50.4.1 476.6 0.5 478 − 0.3 0.26
50.4.2 439.8 0.6 429 2.5 0.13
50.4.3 450 0.6 431 4.2 0.19
100.1.1 275 0.4 258 6.2 0.19
100.1.2 278 0.4 276 0.7 0.19
100.1.3 343 0.6 335 2.3 0.43
100.2.1 351.2 0.5 349 0.6 0.55
100.2.2 366.6 0.5 343 6.4 0.28
100.2.3 370 0.6 359 3.0 0.77
100.3.1 436 0.7 417 4.4 0.73
100.3.2 446.6 0.7 437 2.1 1.02
100.3.3 467 0.9 462 1.1 1.34
100.4.1 484 1.0 480 0.8 1.09
100.4.2 494.6 0.9 495 − 0.1 1.03
100.4.3 526.8 1.0 526 0.2 1.37
Max 1.0 8.7 1.4
Avg 0.4 2.5 0.3

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

11

8.7% and the average and maximum computation times are 0.30 and
1.4 s.

In the next set of experiments, our algorithm is applied on Set 1 of the
new test instances (introduced in Section 5.1). Results are presented in
Table 5.2. For Set 1, only 6 instances were solved optimally using CPLEX

12.8 and the profit gap (%) is defined as “100*(CPLEX profit - VNS
profit) / CPLEX profit”.

The results display the correctness of the proposed mathematical
model, and the immoderate time required to find optimal solutions for
these small instances using a commercial solver. By applying the VNS on
these 6 instances of Set 1, the optimal solution is found in 3 instances. In
addition, the average gap is only 0.54 % and the average computation
time is 0.03 s.

In the third step, our algorithm is applied on Set 2 of the test in
stances. Results are presented in Tables 5.3 and 5.4. Similar to Table 5.1,
for Set 2, the results are compared to best known solutions of Verbeeck
et al. (2017). However, the difference is that, here the service time is not
fixed. In Table 5.4, the Gap and the CPU time of the results of Set 2 are
presented per instance size.

For Set 2, in 24 out of 36 instances, the best known solution is found,
and the best known results are improved in 5 instances. The average gap
and the maximum gap are only 0.03 % and 1.86 %, respectively. These
results prove the high performance quality of the proposed VNS. In
addition, the average and the maximum computation times (CPU) are
0.60 and 3.30 s which show that the proposed VNS is fast enough for
most application purposes. When comparing the average results of
different sizes of instances in Set 2, it can be seen that for all instances
with 20 vertices, the best known solution is found, the maximum profit
gap (%) belongs to the instances with 50 vertices, and the maximum
CPU time belongs to instances with 100 vertices. We may conclude that
when the size of instances are getting larger in terms of the number of
vertices, the VNS is still able to find high-quality solutions.

5.3. Real-world instance

The purpose of this section is to create a real instance for the
TDOPTW-STP, to perform a sensitivity analysis to show the potential use
of the model in a real application, and to demonstrate the importance of
variable service times, leading to higher profits than any kind of prefixed
service times (min, average or max). Moreover, it shows that in case of
congested (road) networks, our formulation and solution approach is
required to obtain high quality solutions. Because of the various tourist
attractions, the city of Shiraz with approximately 240 km2 area and 1.6
million population, is one of the top three tourist destinations in Iran for
both domestic and international tourists. In this section, a real data set is
created based on the urban road network of Shiraz.

5.3.1. Data generation
In a real TDOPTW-STP instance, travel times between POIs are var

iable and rely on the time of the day. Each POI has a time window and
service time dependent profit. The profit is defined as a linear function of
the service time and has lower and upper bounds. Which means, that at
each POI, the minimum visit time should be spent to gain the minimum
profit. After that, the longer the visit time, the higher the profit collected
by the tourist, so that the profit increases with a constant slope (profit
per unit time) until it reaches its maximum value. The required infor
mation to make the TDOPTW-STP instance can be divided into three
general categories; specifications of POIs (including location, time
window, and maximum and minimum service times), network infor
mation (including time dependent travel times between origin
–destination pairs during the day) and tourist considerations (including
tour time budget, and maximum and minimum profits of POIs). Each of
these would be described below.

5.3.1.1. POI data. One hotel (as the start and the end depot) and 38
POIs in the city are selected, and their coordinates (latitude and longi
tude) are extracted using GoogleMaps. Geographical distribution of all
vertices (POIs and the hotel) as well as major streets of the city are
shown in Fig. 5.1. In this study, the Royal hotel located in Abolkalam
square is considered as both the start and the end depot (vertex number

Table 5.2
Detailed results of solution algorithms on Set 1.

Instance CPLEX VNS

Profit CPU (Sec) Profit Profit gap (%) CPU (Sec)

20.1.1 215.2 9534 211.1 1.91 0.05
20.1.2 221.9 7321 221.9 0.00 0.02
20.1.3 236.3 27,479 236.3 0.00 0.02
20.2.1 239.8 47,961 237.1 1.13 0.02
20.2.2 258.8 25,405 258.3 0.19 0.02
20.2.3 240.1 99,956 240.1 0.00 0.03
Max 99,956 1.91 0.05
Ave 36,276 0.54 0.03

Table 5.3
Detailed results of solution algorithms on Set 2.

Instance Best known Solution VNS

Profit Profit Profit gap (%) CPU (Sec)

20.1.1 159 159.0 0.00 0.02
20.1.2 173 173.0 0.00 0.01
20.1.3 184 184.0 0.00 0.02
20.2.1 188 188.0 0.00 0.02
20.2.2 201 201.0 0.00 0.02
20.2.3 195 195.0 0.00 0.03
20.3.1 277 277.0 0.00 0.06
20.3.2 246 246.0 0.00 0.03
20.3.3 259 259.0 0.00 0.03
20.4.1 274 274.0 0.00 0.12
20.4.2 275 275.0 0.00 0.04
20.4.3 268 268.0 0.00 0.10
50.1.1 288 288.0 0.00 0.12
50.1.2 274 274.0 0.00 0.24
50.1.3 289 289.0 0.00 0.11
50.2.1 298 298.0 0.00 0.21
50.2.2 310 310.0 0.00 0.09
50.2.3 340 340.0 0.00 0.34
50.3.1 339 332.7 1.86 0.18
50.3.2 404 404.0 0.00 0.21
50.3.3 366 362.0 1.09 0.36
50.4.1 476.6 473.8 0.59 0.73
50.4.2 439.8 434.0 1.32 0.37
50.4.3 450 450.0 0.00 0.38
100.1.1 275 275.0 0.00 0.49
100.1.2 278 276.0 0.72 0.38
100.1.3 343 343.0 0.00 1.04
100.2.1 351.2 351.0 0.06 1.18
100.2.2 366.6 362.8 1.04 1.52
100.2.3 370 370.0 0.00 1.19
100.3.1 436 437.0 − 0.23 1.74
100.3.2 446.6 454.0 − 1.66 1.58
100.3.3 467 470.0 − 0.64 1.57
100.4.1 484 484.0 0.00 2.31
100.4.2 494.6 497.0 − 0.49 1.52
100.4.3 526.8 540.0 − 2.51 3.30
Max 1.86 3.30
Ave 0.03 0.60

Table 5.4
% Gap and CPU time per dataset in Set 2.

n Max profit gap
(%)

Ave profit gap
(%)

Max CPU
(Sec)

Ave CPU
(Sec)

20 0.00 0.00 0.12 0.04
50 1.86 0.40 0.73 0.28
100 1.04 − 0.31 3.30 1.48

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

12

1 in Fig. 5.1). The opening time of the depot is set equal to 6:00 and its
profit is considered zero. For other places, the start time is between 6:00
and 15:00, the end time is between 15:00 and 23:00. Information and
comments in local tourism websites have been used to collect these real
data. According to this information, the maximum service times are
between 30 and 90 min. Then, the minimum service time for each vertex
is generated by multiplying a random percentage between 60 and 80 %
by its maximum value. Properties of POIs in this instance can be found in
Appendix C.

5.3.1.2. Network data. Travel times of the road network vary during the
day depending on the traffic volume, congestion, and delay, and
generally increases during peak periods and decreases during off-peak
periods. To develop the real time dependent travel times on the traffic
network of Shiraz, the day time between 6 am and 10 pm is divided into
65 time slots of 15 min, and for each time slot, a travel time matrix with
dimensions of 39 by 39 is created. The details on how to produce these
matrices are explained in Appendix D.

5.3.1.3. Tourist considerations. It should be noted that, in the tourist trip

Fig. 5.1. Selected POIs in the city of Shiraz.

Fig. 5.2. The sequence of visits for Sce 0.

Table 5.5
Detailed program for Sce 0.

Item Unit Start depot Other included vertices End depot

vertex - hotel 21 5 27 22 12 14 25 10 23 26 3 28 4 7 hotel

at hr 6.0 6.1 7.2 8.0 8.6 9.5 11.1 12.3 13.5 13.9 15.2 15.8 17.1 17.7 19.1 20.0
wt hr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sst hr 6.0 6.1 7.2 8.0 8.6 9.5 11.1 12.3 13.5 13.9 15.2 15.8 17.1 17.7 19.1 20.0
s min 0.0 61.0 40.0 31.3 53.0 85.0 65.0 65.0 21.0 75.0 30.0 70.0 32.0 70.0 55.0 0.0
dt hr 6.0 7.2 7.9 8.5 9.5 10.9 12.2 13.4 13.8 15.2 15.7 17.0 17.6 18.9 20.0 20.0
tt min 8.1 4.2 6.8 3.0 2.7 13.4 5.1 5.3 6.2 1.5 7.8 4.1 6.5 10.2 1.9 –

at: arrival time, wt: waiting time, sst: start of service time, s: service time, dt: departure time, tt: travel time.

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

13

planning, the aim is to provide a personalized plan for a specific tourist
according to his/her known preferences. Therefore, tourist consider
ations including the time budget and the minimum and maximum
profits for each POI depend on the personal preferences of that tourist. In
this study, we consider an arbitrary tourist, and related tourist data are
generated as follows.

According to Eqs. (3-1) to (3-3), for each POI, the profit function is
generated by estimating four values of minimum and maximum service
time and profit. As explained earlier, minimum and maximum service
times are properties of the POIs. However, maximum and minimum
profits that can be obtained from visiting a POI depends on the personal
preferences of the tourist, and in practice can be directly asked from
him/her. An efficient way of finding these profits based on user pref
erences is itself an ongoing research subject (Tarantino et al., 2019), and
is beyond the scope of this paper. In this research, preferences are
generated based on an average tourist behavior taken from average
visitors’ ratings provided by Google Maps. The Google Maps rating is
translated to maximum profit of each POI using a similar strategy as
explained in Jandaghi et al. (2021), and normalized between 10 and 30.
The minimum profit for each vertex is generated by multiplying a
random number between 0.65 and 0.75 by its maximum value. The time
budget is assumed to be equal to 14 h. So, based on tmax = cn − o1, The
closing time of hotel (depot) is set equal to 20:00.

5.3.2. Experiments and analysis
To evaluate the performance of the proposed model and the solution

method, a number of scenarios are created. These scenarios are
explained in this section. First, the above-explained generated TDOPTW-
STP instance is called the base scenario (Sce 0). The proposed solution
algorithm is implemented on this base instance (Sce 0) and the result is
shown in Fig. 5.2. In this figure, the presented sequence of visits does not
necessarily show the selected road routes. This is because in practice the
selected road is affected by access restrictions due to the directions of
road, geometric design of roads and intersections, and traffic congestion.
Other details of the proposed tour are presented in Table 5.5. According
to the suggested plan, out of 38 possible POIs, the tourist may visit 14
POIs gaining 274.025 as the profit during 14 h. Note that out of 14
visited POIs, 9 POIs with maximum service time, three POIs with min
imum service time and two POIs with a service time between maximum
and minimum service times have been suggested.

In order to analyze the sensitivity of the solution algorithm to the
input data, five other scenarios are generated based on the base scenario
(Sce i, i ∈ {1, ⋯5}). In Sce 1-Max, Sce 1-Ave and Sce 1-Min
(TDOPTW), the service time and the profit of POIs are fixed and
respectively equal to their maximum, average and minimum values in

TDOPTW-STP. In Sce 2, the impact of time windows of all POIs are
removed by setting them from 6 am to 11 pm (TDOP-STP). In Sce 3, the
travel times between vertices are fixed (OPTW-STP). In this scenario, we
set all travel times equal to the travel time at 12:00 (one of the peak
periods of traffic). In Sce 4, the time budget is reduced from 14 h to 12 h,
and, in Sce 5, the start time of the daily tour (opening time of the start
depot) has changed from 6 am to 7.5 am. The proposed VNS is used for
all these scenarios and the results are summarized in Table 5.6. In the
last two columns, two criteria (Imp and Div) are defined to compare the
results of scenarios. Imp shows the percentage improvement in total
profit when the TDOPTW-STP is used versus other problem variants. It is
calculated as 100* (profit of Sce 0 - profit of Sce x) / profit of Sce x,
where Sce x is the considered scenario number. The second index, Div
shows the diversity between two different solutions. Div index between
two solutions A and B is calculated as the sum of the number of vertices
in A not present in B and the number of vertices in B not present in A, and
the number of same vertices in both solutions with different service
times, divided by the total number of vertices present in A and B.

One main comparison which shows the effectiveness of having var
iable service times in such tourist application is when we compare the
TDOPTW-STP against its fixed service time variant (TDOPTW). In Sce 1,
three versions of service times and the corresponding profits are
considered. Compared to the base scenario (Sce 0), the profit is
decreased by 1.47% in Sce 1-Max, 5.48% In Sce 1-Ave, and 10.59% in
Sce1-Min. For this instance, these comparisons clearly illustrate, the
added value of considering a TDOPTW-STP, where service times can be
optimized, instead of a regular TDOPTW. Moreover, the presented
values in Div column shows that the TDOPTW-STP solution is signifi
cantly different versus the TDOPTW solutions.

In Sce 2 (TDOP-STP), when time windows are widened, included
vertices and their sequence and service times have changed. Due to the
flexibility in time windows, higher total profit is gained in lower total
tour time. As expected, less binding time windows lead to a higher
quality solution. In Sce 3 (OPTW-STP), travel times during the day are
assumed as fixed and time independent to show the higher impact of
service time dependent profit in the presence of time dependent travel
times. Thus, when compared with the Sce 0, the algorithm is not flexible
in selecting more appropriate travel times, thereby, less profits are
collected. Note that in this scenario, the number of time slots is equal to
one, while in other instances, it is equal to 65. As a result of ignoring the
time dependency, the solution has around 3% lower quality with around
37% different vertices/service times. In Sce 4, by decreasing the time
budget, the total profit is reduced by around 14%, while the solution is
around 33% different to the solution of Sce 0.

In Sce 5, the start time of the tour has been changed from 6 am to 7.5

Table 5.6
Results of the solution algorithm on all scenarios.

Scenario Problem Profit # of visited POIs Tour time (hr) CPU (sec) Imp (%) Div (%)

Sce 0 TDOPTW-STP 274.025 14 14.000 0.915 – –
Sce 1-Max TDOPTW 270.000 12 13.963 0.109 1.47 19.23
Sce 1-Ave TDOPTW 259.000 14 13.920 0.308 5.48 53.57
Sce 1-Min TDOPTW 245.000 16 13.919 0.123 10.59 46.67
Sce 2 TDOP-STP 277.276 14 13.566 0.446 − 1.19 25.00
Sce 3 OPTW-STP 266.248 13 13.985 0.371 2.84 37.04
Sce 4 TDOPTW-STP 236.534 13 11.452 0.341 13.68 33.33
Sce 5 TDOPTW-STP 275.707 15 14.000 0.450 − 0.61 44.83

Table 5.7
Sensitivity analyses of tour efficiency.

Scenario Problem Profit Tour time (hr) Useful time (hr) Useful time/time budget

Sce 1-Max TDOPTW 270 13.963 12.500 89.3%
Sce 0 TDOPTW-STP 274.025 14 12.554 89.7%
Sce 1-Max-3 TDOPTW 226 13.6739 10.500 75.0%
Sce 0–3 TDOPTW-STP 233.516 14 10.798 77.1%

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

14

am, and accordingly, the opening time of the hotel has been adapted to
7.5 am. In other words, in this scenario, the tour starts later compared to
Sce 0. Despite this change in the start time of tour, the total profit of Sce
5 is slightly more than that of Sce 0. This is because most of the POIs are
closed between 6 and 7.5 in the morning, and therefore starting the tour
1.5 h later gives the opportunity to use the time budget more efficiently.
Comparing these 8 scenarios, the minimum CPU is equal to 0.109 s for
Sce 1-Max (TDOPTW) and the maximum CPU is equal to 0.915 s for Sce
0 (TDOPTW-STP) which is due to the change in the size of the search
space. According to this analysis, the quality and the computational time
of the proposed method seems appropriate to be used in tourist websites
and mobile applications.

Summing up, the conclusion of these experiments is twofold. Firstly,
having time dependency and service time dependent profits together is
the more appropriate way of modeling the tourist trip planning problem,
and secondly, the proposed VNS works correctly and effectively in
practice, as can be seen from the obtained solutions in different sce
narios. Another relevant and important analyses, is to examine the sit
uations where the TDOPTW-STP is more effective for the tourist trip
planning in practice. For a tourist, in a proposed route, travel times and
waiting times are counted as useless times, and the unused time budget
is considered as lost time. On the other hand, the sum of service times is
defined as the useful time. Thus, if it is possible to enlarge the share of
useful time in the time budget, the efficiency of the proposed tour will be
increased. Therefore, at this point, further investigations have been
performed to show the importance of adding the service time dependent
profit into the TDOPTW, specifically when routes are more congested. In
a more congested traffic network, we expect a lower ratio of useful time
over the time budget, and therefore being more flexible in selecting a
proper service time would be more beneficial.

In these experiments, all travel times of the Shiraz instance are
multiplied by 3 (and checked to satisfy the FIFO condition) to have a
more congested network. Then, the new instance is solved in two sce
narios: i) when profits are fixed using the corresponding maximum
values (Sce 1-Max-3), and ii) when profits are service time dependent
(Sce 0–3). Table 5.7 presents the results summary. In this table, the first
two rows correspond to the base scenario and the Sce 1-Max which are
explained earlier in this section. The next two rows show the results of
the same scenarios when travel times are tripled.

In Table 5.7, For each scenario, the profit shows the total profit of the
proposed tour; The tour time shows the total time of the tour including
the visit times, travel times and waiting times; The useful time is the
total time used only for visiting POIs; and the last column shows the ratio
of useful time over time budget as an indication of the tour efficiency.

When we compare the Sce 0 to Sce 1-Max, the ratio of useful time/
time budget is increased from 89.3% to 89.7% and the profit is increased
from 270 to 274.025. Moreover, compare Sce 0–3 to Sce 1-Max-3, this
ratio is increased from 75.0% to 77.1% and profit is increased from 226
to 233.516. Note that an increase in the profit does not necessarily mean
the growth in the useful time/time budget ratio.

Based on these results, we conclude that the increase in profit when
we compare the TDOPTW-STP with the TDOPTW, is more noticeable
when the network is congested. These results show that the TDOPTW-
STP gives a higher chance for a better time budget management to the
tourist.

6. Conclusion

In this paper, the time dependent orienteering problem with time
windows and service time dependent profit is introduced. In the
TDOPTW-STP, the profit of visiting a vertex depends on the duration of

the visit, and this characteristic is added to the time dependent variant of
the OPTW, which makes it even more complex to solve. This complex
problem has interesting applications in practice, including personalized
tourist trip planning. To solve the TDOPTW-STP, a variable neighbor
hood search is proposed, which uses three local search moves of Insert,
Swap, and Replace, adapted to find proper service times together with a
good order of visits.

First, the proposed method is compared with the results of the Ant
Colony System (ACS) by Verbeeck et al. (2017) for the TDOPTW in
stances. The average and maximum gaps are 2.5 and 8.7% and the
average and maximum computation times are 0.30 and 1.4 s. Next, 6
new instances of TDOPTW-STP are generated and solved using the
proposed mathematical model (Set 1). Results are compared with the
VNS on these instances. The average gap is only 0.54 % and the average
computation time is 0.03 s. In the next step, new TDOPTW-STP instances
with known optimal (best) solutions are generated based on the best
known solutions of Verbeeck et al. (2017). For this set (Set 2), in 29 out
of 36 instances, the best known solution is found or improved. In
addition, the average and maximum gaps are only 0.03 % and 1.86 %,
respectively. Furthermore, a real data set is created over the city of
Shiraz (in Iran) with 39 vertices. Using 6 different scenarios, it is
demonstrated that the proposed algorithm is able to obtain high-quality
solutions in real-time. This analysis also clearly shows the significant
impact of the service time dependent profit property, especially in the
presence of time dependency and time windows. Moreover, an extra
analysis proved a better time budget management for the tourist when
the TDOPTW-STP is used in practice.

For future extensions, a major challenge would be to deal with other
types of profit function including a nonlinear one. Another interesting
extension would be to address the discrete service time version of the
problem, similar to Erdoǧan and Laporte (2013), where multiple visits to
each vertex are allowed. Further research could focus on the TDOPTW-
STP with multiple routes. Several vertices may also have different profit
functions which depend on certain factors such as weather conditions or
that are closed on certain days. For example, parks have a higher profit
when the sun is shining than when it is raining. Furthermore, our
problem could be extended by adding mandatory vertices (such as
‘must-see POIs’ or mandatory customers) or a lunch break. This break
has no fixed location or exact timing. In these extensions, some addi
tional constraints should be added and the complexity of the problem
will be significantly increased. Lastly, in this paper, we have ignored that
the departure time of the start depot could be a decision variable.
Therefore, an interesting challenge would be to solve a TDOPTW-STP in
which the departure time from the start depot is an additional decision
variable. These proposed extensions of the problem will help to model
more realistic situations in tourism, logistics, and other possible appli
cations of the problem.

CRediT authorship contribution statement

M. Khodadadian: Conceptualization, Writing – original draft,
Software, Investigation, Investigation, Formal analysis. A. Divsalar:
Conceptualization, Methodology, Validation, Supervision, Writing –
review & editing. C. Verbeeck: Conceptualization, Validation, Writing –
review & editing. A. Gunawan: Validation, Writing – review & editing.
P. Vansteenwegen: Validation, Writing – review & editing.

Acknowledgement

We would like to thank Dr. Reza Golshan Khavas for providing the
code for collecting online travel time information of the city of Shiraz.

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

15

Appendix A. Preliminary experiment for sorting neighbors in the Initialization phase of the solution algorithm

See Tables A.1 and A.2.

Table A.1
Sorting states.

State Sorting criterion

1 without sorting
2 pmin

j /
(

smin
j +ttmin

ij

)

3 pAve
j /

(
sAve
j +ttij

)

4 pmax
j /

(
smax
j +ttmin

ij

)

Table A.2
Detailed results of solution algorithm on Set 1 and Set 2 for each sorting state.

Set Instance state 1 state 2 state 3 state 4

Profit CPU (Sec) Profit CPU (Sec) Profit CPU (Sec) Profit CPU (Sec)

1 20.1.1 211.06 0.04 211.06 0.05 211.06 0.04 211.06 0.04
1 20.1.2 221.91 0.02 221.91 0.02 221.91 0.02 221.91 0.02
1 20.1.3 236.28 0.02 236.28 0.02 236.28 0.02 236.28 0.02
1 20.2.1 237.12 0.02 237.12 0.02 237.12 0.02 237.12 0.02
1 20.2.2 258.26 0.02 258.26 0.02 258.26 0.02 258.26 0.02
1 20.2.3 240.06 0.03 240.06 0.03 240.06 0.03 240.06 0.03
2 20.1.1 159.00 0.02 159.00 0.02 159.00 0.02 159.00 0.02
2 20.1.2 173.00 0.01 173.00 0.01 173.00 0.02 173.00 0.02
2 20.1.3 184.00 0.02 184.00 0.02 184.00 0.02 184.00 0.02
2 20.2.1 188.00 0.02 188.00 0.02 188.00 0.02 188.00 0.02
2 20.2.2 201.00 0.02 201.00 0.02 201.00 0.02 201.00 0.02
2 20.2.3 195.00 0.04 195.00 0.04 195.00 0.03 195.00 0.04
2 20.3.1 277.00 0.07 277.00 0.06 277.00 0.07 277.00 0.06
2 20.3.2 246.00 0.03 246.00 0.03 246.00 0.03 246.00 0.03
2 20.3.3 259.00 0.04 259.00 0.03 259.00 0.03 259.00 0.04
2 20.4.1 274.00 0.13 274.00 0.13 274.00 0.13 274.00 0.13
2 20.4.2 275.00 0.05 275.00 0.04 275.00 0.04 275.00 0.05
2 20.4.3 268.00 0.11 268.00 0.11 268.00 0.11 268.00 0.11
2 50.1.1 288.00 0.12 288.00 0.12 288.00 0.12 288.00 0.12
2 50.1.2 274.00 0.11 274.00 0.11 274.00 0.11 274.00 0.10
2 50.1.3 289.00 0.10 289.00 0.10 289.00 0.11 289.00 0.25
2 50.2.1 298.00 0.21 298.00 0.21 298.00 0.21 298.00 0.29
2 50.2.2 310.00 0.10 310.00 0.12 310.00 0.12 310.00 0.10
2 50.2.3 340.00 0.35 340.00 0.33 340.00 0.34 340.00 0.34
2 50.3.1 332.74 0.17 332.74 0.17 332.74 0.17 332.74 0.17
2 50.3.2 404.00 0.22 404.00 0.21 404.00 0.21 404.00 0.22
2 50.3.3 362.00 0.33 362.00 0.33 362.00 0.33 362.00 0.34
2 50.4.1 473.83 0.74 473.83 0.74 473.83 0.74 473.83 0.77
2 50.4.2 434.00 0.32 434.00 0.33 434.00 0.33 434.00 0.32
2 50.4.3 450.00 0.36 450.00 0.37 450.00 0.36 450.00 0.39
2 100.1.1 275.00 0.48 275.00 0.48 275.00 0.48 275.00 0.50
2 100.1.2 276.00 0.36 276.00 0.36 276.00 0.37 276.00 0.37
2 100.1.3 343.00 0.99 343.00 0.97 343.00 0.96 343.00 1.02
2 100.2.1 351.00 1.12 351.00 1.14 351.00 1.13 351.00 1.13
2 100.2.2 362.81 1.10 362.81 1.11 362.81 1.11 362.81 1.15
2 100.2.3 370.00 1.08 370.00 1.08 370.00 1.11 370.00 1.09
2 100.3.1 437.00 1.70 437.00 1.71 437.00 1.71 437.00 1.76
2 100.3.2 454.00 1.54 454.00 1.53 454.00 1.54 454.00 1.57
2 100.3.3 470.00 1.57 470.00 1.58 470.00 1.59 470.00 1.60
2 100.4.1 484.00 2.33 484.00 2.35 484.00 2.35 484.00 2.37
2 100.4.2 497.00 1.53 497.00 1.53 497.00 1.53 497.00 1.55
2 100.4.3 540.00 3.33 540.00 3.41 540.00 3.37 540.00 3.37

Min 159.00 0.01 159.00 0.01 159.00 0.02 159.00 0.02
Ave 314.74 0.50 314.74 0.50 314.74 0.50 314.74 0.51
Max 540.00 3.33 540.00 3.41 540.00 3.37 540.00 3.37

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

16

Appendix B. The flowchart and a numerical example of FindBestS (for insertion of vertex r between vertex i and vertex j)

See Fig. B.1 and Fig. B.2.

Fig. B.1. Flowchart of FindBestS.

Fig. B.2. A numerical example of FindBestS.

M. Khodadadian et al.

Computers and Operations Research 143 (2022) 105794

17

Appendix C. The TDOPTW-STP Shiraz instance

See Table C.1.

Appendix D. Details of finding travel times for the real instance of Shiraz

To consider changes in the travel time of the road network during the day, the day time between 6 am and 10 pm is divided into 65 time slots of 15
min. Therefore, to collect the travel time of the network during the day, a travel time matrix with dimensions of 39 by 39 is created 65 times (at the
start of each time slot) during the day.

To collect this information, the online information of the “Neshan” website is used. “Neshan” is a navigation application similar to “Waze” and
belongs to an Iranian company called “Rajman Information Structures”. It uses the information technology (IT) and by analyzing the temporal-spatial
position of vehicle probes in the urban road network, produces high quality and accurate data including road travel times. In fact, a user request
includes the location of origin and destination, and the response includes the proposed route and the corresponding travel time at that moment.

For a large volume of requests at one moment, it is impossible to do this step manually. Therefore, a Python program has been used. The program
first asks the input information including the number of vertices, the geographical coordinates of the vertices, start and end time of data gathering, and
the length of the time slots. Then, at the start of each time slot, a matrix containing 39*39 requests is sent and the received responses are recorded in a
text file. This process is repeated 65 times, every 15 min, during the day. The received time dependent travel times per time slot are stored for each
virtual arc. A virtual arc is a dummy arc that holds a concatenation of arcs connecting two POIs. During this process, the linear piecewise travel times

are guaranteed to follow the FIFO rule if
⃒
⃒
⃒μijt

⃒
⃒
⃒ ≤ 1 (Fleischmann et al., 2004).

References

Abbaspour, R.A., Samadzadegan, F., 2011. Time-dependent personal tour planning and
scheduling in metropolises. Expert Syst. Appl. 38 (10), 12439–12452.

Chao, I.M., Golden, B.L., Wasil, E.A., 1996. A fast and effective heuristic for the
orienteering problem. Eur. J. Oper. Res. 88 (3), 475–489.

Chen, X., 2012. Fast patrol route planning in dynamic environments. IEEE Trans. Syst.
Man Cybern. Part A Syst. Hum. 42 (4), 894–904.

Table C.1
Properties of vertices in TDOPTD-STP instance (Sce 0).

Vertex Latitude
(N)

Longitude
(E)

Opening time
(second)

Closing time
(second)

Min service time
(second)

Max service time
(second)

Min profit Max profit

1 (hotel) 29.632842 52.556191 21,600 79,200 0 0 0 0
2 29.616274 52.547944 32,400 72,000 1800 3000 9 13
3 29.625141 52.557752 28,800 78,300 2820 4200 21 30
4 29.621823 52.581676 28,800 76,140 2880 4200 19 28
5 29.608909 52.534294 25,200 79,200 1680 2400 10 15
6 29.592549 52.583558 25,200 79,200 1800 2400 8 11
7 29.635857 52.561808 28,800 79,200 2580 3300 15 21
8 29.61023 52.537126 30,600 64,800 2280 3600 9 13
9 29.641362 52.552385 21,600 82,800 1080 1800 8 12
10 29.613129 52.53894 36,000 61,200 1260 2100 10 14
11 29.636911 52.526297 28,800 70,200 3540 4800 16 23
12 29.608012 52.552318 34,200 68,400 4080 5100 19 27
13 29.611002 52.540683 30,600 72,000 2700 3600 13 19
14 29.618932 52.536115 32,400 79,200 3060 3900 16 22
15 29.624204 52.498186 34,200 63,000 4020 5400 15 20
16 29.618251 52.573336 28,800 64,800 3000 4200 13 19
17 29.629435 52.557661 27,000 73,800 3660 5100 15 20
18 29.630551 52.537318 23,400 82,800 3600 4800 12 17
19 29.619564 52.501315 23,400 82,800 2700 4200 10 15
20 29.618877 52.57654 25,200 82,800 2460 3600 8 11
21 29.608884 52.542752 21,600 82,800 3540 5400 18 25
22 29.608717 52.548418 28,800 64,800 3180 4200 16 22
23 29.614993 52.545037 32,400 66,600 3300 4500 19 26
24 29.620046 52.535222 43,200 59,400 1920 2700 12 17
25 29.617676 52.543851 32,400 73,800 2820 3900 16 24
26 29.617064 52.546841 30,600 72,000 1140 1800 12 16
27 29.612353 52.544329 28,800 72,000 1680 2700 8 11
28 29.629004 52.562279 30,600 63,000 1920 3000 12 16
29 29.616037 52.545057 30,600 63,000 3780 4800 13 19
30 29.59277 52.574244 32,400 57,600 2340 3900 12 16
31 29.618046 52.545394 32,400 54,000 2280 3600 13 18
32 29.631428 52.494688 43,200 54,000 3660 5400 10 14
33 29.666442 52.479491 39,600 54,000 3300 5400 10 14
34 29.632692 52.522044 43,200 54,000 3300 5400 8 11
35 29.624327 52.53974 54,000 81,000 1920 3000 9 13
36 29.62467 52.523773 54,000 81,000 1980 3000 8 12
37 29.678142 52.459419 54,000 81,000 2040 3000 8 11
38 29.652894 52.486172 36,000 75,600 2640 3600 10 14
39 29.685339 52.471618 34,200 82,800 3960 5400 12 16

M. Khodadadian et al.

http://refhub.elsevier.com/S0305-0548(22)00083-1/h0005
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0005
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0015
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0015
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0020
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0020

Computers and Operations Research 143 (2022) 105794

18

Chircop, P.A., Surendonk, T.J., van den Briel, M.H.L., Walsh, T., 2013. A column
generation approach for the scheduling of patrol boats to provide complete patrol
coverage. In: Proceedings of the 20th International Congress on Modelling and
Simulation, pp. 1–6.

Dewil, R., Vansteenwegen, P., Cattrysse, D., Van Oudheusden, D., 2015. A minimum cost
network flow model for the maximum covering and patrol routing problem. Eur. J.
Oper. Res. 247 (1), 27–36.

Dib, O., Manier, M.-A.-A., Moalic, L., Caminada, A., 2017. Combining VNS with Genetic
Algorithm to solve the one-to-one routing issue in road networks. Comput. Oper.
Res. 78, 420–430.

Divsalar, A., Vansteenwegen, P., Cattrysse, D., 2013. A variable neighborhood search
method for the orienteering problem with hotel selection. Int. J. Prod. Econ. 145 (1),
150–160.

Divsalar, A., Vansteenwegen, P., Sörensen, K., Cattrysse, D., 2014. A memetic algorithm
for the orienteering problem with hotel selection. Eur. J. Oper. Res. 237 (1), 29–49.

Ekici, A., Retharekar, A., 2013. Multiple agents maximum collection problem with time
dependent rewards. Comput. Ind. Eng. 64 (4), 1009–1018.

Erdoǧan, G., Laporte, G., 2013. The orienteering problem with variable profits. Networks
61 (2), 104–116.

Erkut, E., Zhang, J., 1996. The maximum collection problem with time-dependent
rewards. Naval Res. Logistics (NRL) 43 (5), 749–763.

Feillet, D., Dejax, P., Gendreau, M., 2005. Traveling salesman problems with profits.
Transport. Sci. 39 (2), 188–205.

Fleischmann, B., Gietz, M., Gnutzmann, S., 2004. Time-varying travel times in vehicle
routing. Transport. Sci. 38 (2), 160–173.

Fomin, F.V., Lingas, A., 2002. Approximation algorithms for time-dependent
orienteering. Inf. Process. Lett. 83 (2), 57–62.

Garcia, A., Linaza, M.T., Arbelaitz, O., Vansteenwegen, P., 2009. Intelligent Routing
System for a Personalised Electronic Tourist Guide. Springer, Wien New York,
pp. 185–197.

Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., Linaza, M.T., 2013.
Integrating public transportation in personalised electronic tourist guides. Comput.
Oper. Res. 40 (3), 758–774.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., 2014. Efficient cluster-
based heuristics for the team orienteering problem with time windows. Asia-Pacific
J. Oper. Res. 36 (01), 1950001.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N., 2015. Heuristics
for the time dependent team orienteering problem: application to tourist route
planning. Comput. Oper. Res. 62, 36–50.

Golden, B.L., Levy, L., Vohra, R., 1987. The orienteering problem. Naval Res. Logistics
(NRL) 34 (3), 307–318.

Guitouni, A., Masri, H., 2014. An orienteering model for the search and rescue problem.
CMS 11 (4), 459–473.

Gunawan, A., Lau, H.C., Vansteenwegen, P., 2016. Orienteering Problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255 (2),
315–332.

Gunawan, A., Ng, K.M., Kendall, G., Lai, J., 2018. An iterated local search algorithm for
the team orienteering problem with variable profits. Eng. Optim. 50 (7), 1148–1163.

Gündling, F., Witzel, T., 2020Time-Dependent Tourist Tour Planning with Adjustable
Profits. In 20th Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2020), Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

Keskin, B.B., Li, S.R., Steil, D., Spiller, S., 2012. Analysis of an integrated maximum
covering and patrol routing problem. Transport. Res. Part E: Logist. Transport. Rev.
48 (1), 215–232.

Jandaghi, H., Divsalar, A., Emami, S., 2021. The categorized orienteering problem with
count-dependent profits. Appl. Soft Comput. 113.

Li, J., 2011. Model and algorithm for time-dependent team orienteering problem. In:
International Conference on Computer Education, Simulation and Modeling.
Springer, Berlin, Heidelberg, pp. 1–7.

Li, J., Wu, Q., Li, X., Zhu, D., 2010. Study on the time-dependent orienteering problem.
In: 2010 International Conference on E-Product E-Service and E-Entertainment.
IEEE, pp. 1–4.

Liao, Z., Zheng, W., 2018. Using a heuristic algorithm to design a personalized day tour
route in a time-dependent stochastic environment. Tourism Manage. 68, 284–300.

Lou, Y., Yin, Y., Lawphongpanich, S., 2011. Freeway service patrol deployment planning
for incident management and congestion mitigation. Transport. Res. Part C: Emerg.
Technol. 19 (2), 283–295.

Moonen, M., Cattrysse, D., Van Oudheusden, D., 2007. Organising patrol deployment
against violent crimes. Oper. Res. Int. Journal 7 (3), 401–417.

Murat Afsar, H., Labadie, N., 2013. Team orienteering problem with decreasing profits.
Electr. Notes Discr. Mathematics 41, 285–293.

Paydar, M.M., Saidi-Mehrabad, M., 2013. A hybrid genetic-variable neighborhood search
algorithm for the cell formation problem based on grouping efficacy. Comput. Oper.
Res. 40 (4), 980–990.

Peng, G., Dewil, R., Verbeeck, C., Gunawan, A., Xing, L., Vansteenwegen, P., 2019. Agile
earth observation satellite scheduling: an orienteering problem with time-dependent
profits and travel times. Comput. Oper. Res. 111, 84–98.

Pietz, J., Royset, J.O., 2013. Generalized orienteering problem with resource dependent
rewards. Naval Res. Logistics (NRL) 60 (4), 294–312.

Portugal, D., Rocha, R.P., 2013. Distributed multi-robot patrol: a scalable and fault-
tolerant framework. Rob. Auton. Syst. 61 (12), 1572–1587.

Takamiya, M., Watanabe, T., 2011. Planning high responsive police patrol routes with
frequency constraints. In Proceedings of the 5th International Conference on Ubiquitous
Information Management and Communication, ICUIMC 2011, (pp. 1–8).

Tang, H., Miller-Hooks, E., Tomastik, R., 2007. Scheduling technicians for planned
maintenance of geographically distributed equipment. Transport. Res. Part E:
Logistics Transport. Rev. 43 (5), 591–609.

Tarantino, E., De Falco, I., Scafuri, U., 2019. A mobile personalized tourist guide and its
user evaluation. Inf. Technol. Tourism 21 (3), 413–455.

Tsiligirides, T., 1984. Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35 (9),
797–809.

Vansteenwegen, P., Gunawan, A., 2019. Orienteering problems. In: Speranza, M.G.,
Oliveira, J.F. (Eds.), EURO Advanced Tutorials on Operational Research. Springer
International Publishing.

Vansteenwegen, P., Souffriau, W., Oudheusden, D.V., 2011. The orienteering problem: a
survey. Eur. J. Oper. Res. 209 (1), 1–10.

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D., 2009.
Iterated local search for the team orienteering problem with time windows. Comput.
Oper. Res. 36 (12), 3281–3290.

Verbeeck, C., Sörensen, K., Aghezzaf, E.H., Vansteenwegen, P., 2014. A fast solution
method for the time-dependent orienteering problem. Eur. J. Oper. Res. 236 (2),
419–432.

Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.H., 2017. The time-dependent orienteering
problem with time windows: a fast ant colony system. Ann. Oper. Res. 254 (1),
481–505.

Willemse, E.J., Joubert, J.W., 2012. Applying min-max k postmen problems to the
routing of security guards. J. Operat. Res. Soc. 63 (2), 245–260.

Yu, J., Aslam, J., Karaman, S., Rus, D., 2015. Anytime planning of optimal schedules for a
mobile sensing robot. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 5279–5286.

Yu, Q., Fang, K., Zhu, N., Ma, S., 2019. A matheuristic approach to the orienteering
problem with service time dependent profits. Eur. J. Oper. Res. 273 (2), 488–503.

Zenker, B., Ludwig, B., 2009. Rose: assisting pedestrians to find preferred events and
comfortable public transport connections. In: Proceedings of the 6th International
Conference on Mobile Technology, Application and Systems, pp. 1–5.

Zhu, N., Liu, Y., Ma, S., He, Z., 2014. Mobile traffic sensor routing in dynamic
transportation systems. IEEE Trans. Intell. Transp. Syst. 15 (5), 2273–2285.

M. Khodadadian et al.

http://refhub.elsevier.com/S0305-0548(22)00083-1/h0025
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0025
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0025
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0025
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0030
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0030
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0030
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0035
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0035
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0035
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0040
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0040
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0040
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0045
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0045
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0050
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0050
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0055
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0055
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0060
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0060
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0065
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0065
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0070
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0070
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0075
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0075
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0080
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0080
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0080
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0085
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0085
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0085
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0090
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0090
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0090
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0095
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0095
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0095
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0100
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0100
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0105
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0105
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0110
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0110
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0110
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0115
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0115
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0125
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0125
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0125
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0130
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0130
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0135
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0135
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0135
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0140
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0140
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0140
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0145
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0145
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0150
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0150
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0150
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0155
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0155
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0160
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0160
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0165
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0165
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0165
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0170
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0170
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0170
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0175
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0175
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0180
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0180
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0190
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0190
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0190
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0195
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0195
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0200
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0200
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0205
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0205
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0205
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0210
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0210
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0215
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0215
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0215
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0220
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0220
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0220
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0225
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0225
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0225
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0230
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0230
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0235
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0235
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0235
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0240
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0240
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0245
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0245
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0245
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0250
http://refhub.elsevier.com/S0305-0548(22)00083-1/h0250

	Time dependent orienteering problem with time windows and service time dependent profits
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Linearization

	4 Proposed solution algorithm
	4.1 General structure of the algorithm
	4.2 Initialization phase
	4.3 Improvement phase
	4.3.1 Shake
	4.3.2 VND

	4.4 Insert-minS and Swap
	4.5 Replace
	4.5.1 Recentering

	5 Results and discussion
	5.1 Test instances
	5.2 Numerical experiments
	5.3 Real-world instance
	5.3.1 Data generation
	5.3.1.1 POI data
	5.3.1.2 Network data
	5.3.1.3 Tourist considerations

	5.3.2 Experiments and analysis

	6 Conclusion
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A Preliminary experiment for sorting neighbors in the Initialization phase of the solution algorithm
	Appendix B The flowchart and a numerical example of FindBestS (for insertion of vertex r between vertex i and vertex j)
	Appendix C The TDOPTW-STP Shiraz instance
	Appendix D Details of finding travel times for the real instance of Shiraz
	References

