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A B S T R A C T   

This paper addresses the time dependent orienteering problem with time windows and service time dependent 
profits (TDOPTW-STP). In the TDOPTW-STP, each vertex is assigned a minimum and a maximum service time 
and the profit collected at each vertex increases linearly with the service time. The goal is to maximize the total 
collected profit by determining a subset of vertices to be visited and assigning appropriate service time to each 
vertex, considering a given time budget and time windows. Moreover, travel times are dependent of the de
parture times. To solve this problem, a mixed integer linear model is formulated and a metaheuristic algorithm 
based on variable neighborhood search (VNS) is developed. This algorithm uses three specifically designed 
neighborhood structures able to deal with the variable service times and profits of vertices. Extensive compu
tational experiments are conducted on test instances adapted from the TDOPTW benchmarks, to validate the 
performance of our solution approach. Furthermore, a real instance for the city of Shiraz (Iran) is generated. 
Experimental results demonstrate the suitability of the TDOPTW-STP in practice, and demonstrate that the 
proposed algorithm is able to obtain high-quality solutions in real-time. Sensitivity analyses clearly show the 
significant impact of the service time dependent profits on the route plan, especially in the presence of travel 
time dependency and time windows.   

1. Introduction 

The orienteering problem (OP) is specified on a network in which 
vertices represent geographical locations where a profit can be gained 
and where arcs represent connections between vertices with a certain 
travel time. The OP is the integration of selecting a subset of vertices to 
visit, with determining an appropriate path for visiting the selected 
vertices; thereby the sum of accumulated profits is maximized under a 
limited time budget. Moreover, it is assumed that each vertex can be 
visited at most once. The OP has many intriguing applications in de
fense, tourism and logistics (Vansteenwegen et al., 2011). One of the 
interesting variants of the OP is the Time Dependent OP with Time 
Windows (TDOPTW) (Verbeeck et al., 2014). In this problem, each 
vertex has a time window (opening time and closing time) and a 
deterministic service time, and the travel time required to traverse a link 

between two vertices relies on the time of the day the link is passed. As 
mentioned in Verbeeck et al. (2014), formulating the time dependent 
problem makes us capable of considering congestion in (multi-modal) 
routing problems applied in logistic or tourist trip planning. Another 
relevant variant of the OP in the literature is the OP with Service Time 
dependent Profits (OPSTP) (Yu et al., 2019), where the collected profit 
at each vertex is not a fixed single value but depends on the duration of 
its service or visit time. In this problem, restricted by a time budget, it 
may not be possible or desirable to gather the maximum profit at each 
visit. Thus, in order to maximize the total profit, not only a subset of 
vertices needs to be selected, but also the suitable service time at each 
selected vertex has to be determined. Many real world applications for 
the OPSTP has been introduced in the literature. For example, the 
fishing problem, in which there is a limited allowed time for fishing at 
each location, having variable amount of fish (Erdoǧan and Laporte, 
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2013). Other examples are the tourist trip planning (Yu et al., 2015), the 
traffic routing problem (Zhu et al., 2014), and finding the shortest path 
problem for target searching (Guitouni and Masri, 2014; Pietz and 
Royset, 2013). 

In the current research, a combination of TDOPTW and OPSTP is 
addressed which we call the TDOPTW-STP. Many interesting applica
tions of TDOPTW-STP can be found in a situation where each vertex has 
a time window and a service time dependent profit, while the travel time 
between two vertices relies on the time of the day that link is passed. 

In the presented TDOPTW-STP, each vertex has lower and upper 
bounds for its service time and the collected profit at each vertex is 
assumed to increase linearly with the service time. The addition of this 
service-time dependent profit (STP) to the TDOPTW makes the problem 
more realistic where in real-life, higher profits can be collected during a 
longer service time, respecting the corresponding lower and upper 
bounds. Here, we mention some possible applications of the TDOPTW- 
STP in tourism, logistics, entertainment, and military sectors, where 
each vertex may have a bounded profit as a linear function of its service 
time. 

In the tourism sector, POIs have opening and closing times, and 
network travel times may change significantly in peak and off peak 
hours. On the other hand, duration of visiting POIs by different tourists 
may be different. For instance, in visiting a museum, some tourists stay 
longer to collect more information. This increases their visit time, but 
also their appreciation. In this case, the collected profit depend on the 
visiting duration at the museum (Vansteenwegen and Gunawan, 2019). 
In supply chain management, and the VRP with profits for example, or 
reverse logistics, gaining more profit may require a longer service time 
at a customer, while travel times depends on traffic congestion (Van
steenwegen and Gunawan, 2019). In the entertainment sector, it is 
trivial that a longer show at a location, results in a higher profit that can 
be collected (Erdoǧan and Laporte, 2013). It is also probable that show 
locations have time windows and that travel times between them vary 
during the day because of weather and traffic conditions. Other appli
cations arise in the military sector and humanitarian logistics, e.g. 
search and rescue, where a vehicle looks for gathering information and 
finding survivors, staying longer at target locations should increase the 
amount of information and number of survivors (Erdoǧan and Laporte, 
2013). In these situations, depending on conditions of target locations 
and network properties, target locations may be constrained by time 
windows, and travel times may fluctuate. 

Note that, in all these cases, at each vertex, a minimum service time 
should be passed to gain the minimum profit and besides, the collected 
profit has an upper bound as the maximum profit. Moreover, incorpo
rating time windows and time dependency, the variable service time at a 
vertex in the TDOPTW-STP provides the decision opportunity to 
consume the time budget more efficiently in the trade-off between travel 
time and service time. This new combination of properties is a motiva
tion for researchers and practitioners to develop new models and algo
rithms in resource management. 

The main contributions can be summarized as follows:  

• The TDOPTW-STP is introduced, motivated and mathematically 
modelled. 

• A metaheuristic solution algorithm based on the variable neighbor
hood search (VNS) is proposed to solve the problem.  

• A set of problem instances with known optimal solutions are 
generated based on existing benchmark instances of TDOPTW and 
are used to evaluate the performance of the solution method.  

• A real data set based on a real road network is generated and used to 
show how the TDOPTW with service time dependent profits (STP) 
can be tackled in a practical case. 

Following a literature review in Section 2, the mathematical model 
of the TDOPTW-STP is described in Section 3. Then, the solution algo
rithm is explained in Section 4. Afterwards, results and discussion is 

presented in Section 5. Section 6 concludes this paper and discusses 
possible future work. 

2. Literature review 

Tsiligirides (1984) introduced the standard OP that has been proven 
to be NP-Hard by Golden et al. (1987). Feillet et al. (2005) and Van
steenwegen and Gunawan (2019) give an overview of the category of 
Traveling Salesman Problems with profits, to which OP belongs. 
Extensive surveys on the OP and its extensions, solution algorithms and 
applications are given by Vansteenwegen et al. (2011) and Gunawan 
et al. (2016). The rest of this literature section is devoted to the two most 
relevant topics for the current research: the time dependency and vari
able profits for OP variants. 

In the OP, it is assumed that the link travel time is a constant value. 
However, in many practical situations, it actually depends on the 
network conditions, such as transportation mode and traffic congestion 
level. This variant of the OP is called the time dependent OP (TDOP) and 
is introduced by Fomin and Lingas (2002). Afterward, Li et al. (2010) 
and Verbeeck et al. (2014) investigated the TDOP more thoroughly. Li 
et al. (2010) used the dynamic programming idea for an optimal labeling 
algorithm, which is combined by a mixed integer programming model to 
solve the TDOP. However, they did not test their algorithm on bench
mark instances and thus did not propose performance metrics. Verbeeck 
et al. (2014) designed a local search based metaheuristic, combined by 
an ant colony system and tested it on modified OP instances that consist 
of a complete graph with categorized link travel times. For the time 
dependent team orienteering problem (TDTOP) several solution algo
rithms have been proposed in the literature. Li (2011) proposed a mixed 
integer programming model and an optimal dynamic labeling algorithm 
but without testing on test instances and presenting any performance 
metrics. Gavalas et al. (2014) and Gavalas et al. (2015) designed various 
cluster-based heuristics and tested it on instances created based on the 
metropolitan area of Athens. 

The TDOPTW adds both time dependency in travel time and time 
window constraints on the moment of service to the basic OP. Abbas
pour and Samadzadegan (2011) applied multimodal shortest path 
finding modules and two adapted genetic algorithms to the TDOPTW. 
Their algorithm is evaluated over datasets derived from the metropol
itan area of Tehran without reporting any performance measure. Ver
beeck et al. (2017) proposed an effective and efficient solution method 
by applying the swap and replace local search procedures and based on 
the ant colony system with a pre-processing step. This algorithm is 
verified by realistic instances that originate from a large road network of 
Benelux (Belgium, The Netherlands and Luxembourg) with available 
time profiles of link travel times. These instances are the only available 
benchmarks for TDOPTW in the literature. 

Zenker and Ludwig (2009) introduced the TDTOPTW for the first 
time. However, they have not proposed any solution algorithm for the 
presented model. They developed a mobile application (ROSE) that 
presents recommendations, route generation, and navigation to assist 
pedestrians to access vertices Points of Interest (POIs) by public trans
portation. Garcia et al. (2009) and Garcia et al. (2013) designed two 
solution algorithms for the TDTOPTW that are applied to real urban test 
instances. The first work solved the TDTOPTW as a TOPTW by using the 
average travel times between all pairs of POIs. Then, a repair procedure 
checks the derived TOPTW solution based on real travel times and 
removes some included POIs to provide feasibility conditions. The sec
ond work presented an ILS heuristic which finds a near-optimal solution 
in a few seconds. In this work, a tourist can choose between walking and 
using public transportation with periodic schedules. The waiting time 
for public transport depends on the arrival time to the corresponding 
station. As a result, the travel time between POIs depends on the de
parture time at a POI and the transportation mode. Liao and Zheng 
(2018) proposed a hybrid heuristic algorithm based on random simu
lation to design a personalized day tour in a time dependent stochastic 
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environment. In this situation, various factors such as the weather, the 
traffic, the limited capacity of POIs or unforeseen events are stochastic 
and time dependent. However, the proposed solution by this work is not 
evaluated on benchmark instances and therefore no performance mea
sures are proposed. 

The basic assumption in the classical OP and all above-mentioned 
variants is that the visit (service) time of vertices is known in advance 
and the complete profit is obtained when reaching a vertex. The orien
teering problem with variable profits (OPVP) is another interesting 
variant of the OP (Erdoǧan and Laporte (2013) in which the obtained 
profit is not fixed. Yu et al. (2019) have classified OPVP into two 
streams: (i) the OP with arrival time dependent profits (OPATP), in 
which profits depend on the arrival time at each vertex, (ii) the OP with 
service time dependent profits (OPSTP), in which profits depend on the 
duration of the service time at each vertex. The latter one will be 
considered in this paper. 

Erkut and Zhang (1996) introduced the OPATP where each vertex 
has a linear decreasing profit as a function of its arrival time, and the 
goal is to find a single route maximizing the total collected profit. In 
their paper, small size instances are solved using an exact branch-and- 
cut method, and large size instances are solved using a greedy heuris
tic. An OPATP with multiple tour is introduced by Tang et al. (2007) 
where they developed a tabu search with an adaptive memory to solve 
instances of the problem. Ekici and Retharekar (2013) introduced the 
OPATP with multiple vehicles, and a cluster-first route-second heuristic 
is developed by them. Murat Afsar and Labadie (2013) found lower and 
upper bounds of the OPATP instances using column generation and 
evolutionary local search techniques. Peng et al. (2019) addressed the 
agile earth observation satellite scheduling problem as the TDOPTW 
with time dependent profits. In this case, the collected profit depends on 
the start time. Moreover, time dependency and time windows are added 
to the basic OPATP. They proposed a bidirectional dynamic program
ming based iterated local search (BDP-ILS). The performance evaluation 
shows that their solution method performs very well. 

In the OPSTP problem, one needs to find the route of the vertices to 
visit, as well as the proper service time (duration) at each selected 
vertex. This problem is firstly considered by Erdoǧan and Laporte (2013) 
where they assume that the complete profit at a vertex is gained with 
several discrete passes or a continuous amount of time to be spent at that 
vertex. They formulated the discrete model as a linear integer pro
gramming problem and the continuous model as a nonlinear integer 
programming problem. Then, they provided valid inequalities to 
strengthen the formulation for both concave and convex profit collection 
functions and developed a unified branch-and-cut algorithm for the two 
versions. Pietz and Royset (2013) defined the Generalized Orienteering 
Problem with Resource Dependent Rewards (GOP-RDR) where rewards 
are collected by visiting each vertex with a concave reward function, and 
the reward level depends on the amount of limited resources consumed. 
Arcs in the network are passed while expending the same resources used 
for reward collection. The path is built up so that the total resource 
consumption is within predetermined bounds. They gave a branch and 
bound algorithm for their variant of OPSTP that solves a series of convex 
partial path relaxations. They developed a heuristic algorithm to start 
their branch and bound tree with a high-quality solution, speeding up 
the computation. Regardless of differences arising from the various 
types of profit function, note that firstly, the OP-STP is a special case of 
GOP-RDR (as an extension of GOP) in which time budget is considered 
as the limited resource, secondly, the TDOPTW-STP is not a special case 
of GOP, due to each of its all 3 crucial properties (TD, TW, and STP), and 
also is not a special case of GOP-RDR or OP-STP, due to each of its two 
crucial properties (TD, and TW), and on the other hand, TDOPTW-STP is 
an extension of TDOPTW and OP-STP. 

Guitouni and Masri (2014) studied a search-and-rescue path plan
ning for an aerial search aid in continuous space and time. Their prob
lem is similar to OPVP in the sense that at every vertex the vehicle 
gathers a proportion of the profit that is conditioned by the time used on 

that vertex. An optimal solution was found for a numerical instance of 
ten vertices in 42 min. Yu et al. (2015) have used the OPSTP model for 
the tourist trip planning, where an increasing profit function depends on 
the duration of stay at each vertex. They used a piecewise linear 
approximation for the nonlinear profit function, and used Gurobi to 
solve the proposed model, and found near-optimal solutions to the 
nonlinear problem. Gunawan et al. (2018) are the first to present a 
mathematical programming model for the TOPVP as an extension of the 
OPVP discrete model, and developed a solution algorithm based on ILS 
proposed by Chao et al. (1996). Their local search moves consist of two- 
point exchange, one-point movement, and 2-Opt. For performance 
evaluation, the proposed algorithm was run on OPVP benchmark in
stances based on TSP test instances. The authors concluded that the al
gorithm is able to find optimal solutions in considerably shorter 
computational time for the small instances and good-quality solutions 
that have significantly better objective values than those found by 
CPLEX under reasonable run times. Based on Yu et al. (2019), in the 
OPSTP problem, the extra decision of assigning appropriate service 
times to each selected vertex causes the complexity of designing heu
ristic algorithms for this problem. They conclude that a proper heuristic 
should consider that: First, a comprehensive representation of the so
lutions is important; second, since both traveling times and service times 
use the common source time (the time budget), they may severely 
interact on each other, which causes another difficulty in determining 
auspicious solution space regions during the search process. A variant of 
the OPSTP with a concave service time function is also addressed by Yu 
et al. (2019). They formulated a mixed integer nonlinear programming 
model, and developed a matheuristic which decomposes the problem 
into two subproblems, of routing and scheduling. Then, a tabu search is 
proposed to find feasible solutions for the routing subproblem, and an 
exact polynomial time algorithm is designed to optimally solve the 
scheduling subproblem, which finds the service times of visited vertices. 
Numerical experiments on both random and adapted TSPLIB instances 
show the effectiveness of their proposed solution method on instances 
with up to 200 vertices. 

Another relevant problem in the literature is called the patrol routing 
problem (PRP). In the PRP, given a set of patrol cars and a set of hot 
spots, the objective is to find patrol cars’ routes maximizing the time that 
these cars spend in hot spots. Each hot spot is assigned a time window 
and cars receive profits only if they stay at the hot spot within its cor
responding time window. Constant travel times between hot spots are 
known, and all cars start and end their shift at the same times and lo
cations (Dewil et al., 2015). Various variants and applications of the PRP 
has been studied in Moonen et al. (2007), Takamiya and Watanabe 
(2011), Lou et al. (2011), Willemse and Joubert (2012), Keskin et al. 
(2012), Chen (2012), Portugal and Rocha (2013), Chircop et al. (2013), 
and Dewil et al. (2015). Since the relation between the profit and the 
service time is linear, the TDOPTW-STP seems very close to the PRP, but 
there are crucial differences. In the PRP, a certain vertex is left only 
when it closes or when another vertex with a higher profit rate (collected 
profit per time) opens at that moment, but in the TDOPTW-STP, there is 
a maximum service time for each vertex. Thus, for a certain visited 
vertex, the time of completing the maximum service time has the key 
role in determining the departure time while this time for a visited 
vertex is not predetermined on the time profile and depends on its 
arrival time. Furthermore, in the TDOPTW-STP, there is a nonzero 
minimum service time for each vertex while in the PRP, as soon as the 
service time is started, the profit is collected. Moreover, profits in the 
TDOPTW-STP have a strictly positive offset, unrelated to the profit per 
time unit. Due to these properties, the PRP instances can easily be solved 
exactly, by modeling the problem as a minimum cost network flow 
problem (Dewil et al., 2015). However, this is not applicable to the 
TDOPTW-STP. 

To the best of authors’ knowledge, the only work which considers 
both time dependency and service time dependent profits together in the 
OPTW, is a recent conference paper by Gündling and Witzel (2020). 
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They studied TDTOPTW with adjustable profits and presented the first 
MILP representation of it. In this work, profit is characterized as a linear 
function of service time (similar to the work presented in this paper). 
Without presenting details about the solution approach, they presented 
a fast iterated local search (ILS) that can be used in practical applications 
such as a mobile app service for tourists. They claim the practical 
feasibility of their approach by applying it on the data taken from the 
city of Berlin. In their ILS, the visit time is dealt with discreetly in 5 min 
steps. Thus, it seems that it discretely searches the solution space to find 
the appropriate service time, while our algorithm in this paper does that 
continuously. 

In the TDOPTW-STP, time dependent travel times and service time 
dependent profits are added simultaneously to the OPTW. In fact, by 
integrating routing and scheduling, the user (planner, tourist, or driver) 
tries to consume the time budget for visiting vertices and collecting 
profit rather than spending the time in the traffic network. Despite its 
interesting applications, according to the literature review, this new 
variant of the OPTW is not fully addressed. Moreover, although there are 
similar problems in the literature, such as PRP and OP-STP, in none of 
them lower and upper bounds are imposed on service times and profits 
of each vertex. As briefly mentioned earlier, this property makes the 
problem even more difficult to solve. In this research, the TDOPTW-STP 
with minimum and maximum service times is introduced and mathe
matically modelled. A solution method is implemented, and new in
stances of the problem are generated and solved using the proposed 
solution method. 

3. Problem description 

In this section, the time dependent orienteering problem with time 
windows and service time dependent profits (TDOPTW-STP) is mathe
matically defined and formulated as a Mixed Integer Programming 
(MIP) model. The proposed TDOPTW-STP can be explained on the set 
Vc = {1, ..., n} of vertices. In this set, vertex 1 represents the start depot, 
and vertex n is the end depot. We assume all vertices i and j in Vc are 
connected by an arc (i, j). Each vertex i ∈ Vc is assigned a non-negative 
minimum profit, pmin

i , and a maximum profit, pmax
i . The effective profit 

is obtained by visiting the vertex i for a time length of si units between its 
opening time oi and its closing time ci + smin

i , where smin
i is the minimum 

required service time to earn the minimum profit of vertex i. The start 
time of a service at vertex i can only happen within its time window and 
the end time of service at each vertex i may not exceed ci + smin

i . This 
implies that if you start a service at time ci, only the minimal profit can 
be collected. As presented in Fig. 3.1, the service time for vertex i (si) is a 
continuous variable between smin

i and smax
i , and the profit of vertex i (pi) 

is a continuous variable depending on si and resides between pmin
i and 

pmax
i . A set of linear equations, presented in Eqs. (3-1) to (3-3), is used to 

formulate the relationship between pi and si. Note that, when the MINLP 
is presented, pi is effectively eliminated from the mathematical model of 
TWOPTD-STP by using these equations. Finally, the corresponding 
profit and service time for the start and the end depot is set equal to 0. 

pi = ai.si + bi (3-1)  

ai =
(
pmax

i − pmin
i

)/(
smax

i − smin
i

)
(3-2)  

bi = pmin
i − ai.smin

i (3-3) 

Similar to the TDOPTW proposed by Verbeeck et al. (2017), it is 
assumed that a visit day is divided in k time slots. Furthermore, it is also 
assumed that ltst and utst indicate the minute when time slot t starts and 
ends respectively. Afterwards, according to these time slots and their 
related travel times for each arc (ttij,ltst ), the linear travel time factors for 
each arc μijt and ϑijt can be found using the following equations: 

μijt =
(
ttij,utst − ttij,ltst

)/
(utst − ltst) (3-4)  

ϑijt = ttij,ltst − μijt.ltst (3-5) 

Having these coefficients, the travel time from i to j, when departing 
at time wijt in time slot t (ltst ≤ wijt ≤ utst), is calculated as follows: 

ttijt = μijt.wijt +ϑijt (3-6) 

In the TDOPTW-STP, the objective is to find a route (solution) which 
starts and ends in the given depots, and visits a number of vertices to 
maximize the total collected profit while satisfying a given time budget. 
Based on this definition, two mathematical models are presented. The 
first one is a Mixed Integer NonLinear Programming (MINLP) and the 
second one is its corresponding linear version (MILP) where in both of 
them the service time is considered as a continuous variable. Decision 
variables and parameters of the presented MIP models are listed below. 
Decision variables  

xijt 1 if arc (i, j) is traversed with a departure time in time slot t by the route, 
0 otherwise 

wijt departure time from i to j in time slot t 
sj service time of vertex j  

Parameters  

smin
j minimum service time of vertex j 

smax
j maximum service time of vertex j 

pmin
j minimum profit of vertex j 

pmax
j maximum profit of vertex j 

aj slope coefficient of the linear profit 
bj intercept coefficient of the linear profit 
ttijwijt the travel time from vertex i to vertex j, when departing at time wijt in time 

slot t 
μijt slope coefficient of the linear time dependent travel time 
ϑijt intercept coefficient of the linear time dependent travel time 
ltst start of time slot t 
utst end of time slot t 
n number of vertices 
k number of time slots 
oi opening time of vertex i 
ci closing time of vertex i 
cn closing time of end depot  

The TDOPTW-STP is modelled as a MINLP model as follow. 

Max
∑n− 1

i=1

∑n

j=2

∑k

t=1

[(
aj.sj + bj

)
.xijt

]
(3-7)  

∑n

j=1
x1j1 =

∑n− 1

i=1

∑k

t=1
xint = 1 (3-8) 

Fig. 3.1. The profit of a vertex as a linear function of service time.  
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∑n− 1

i=1

∑k

t=1
xiht =

∑n

j=2

∑k

t=1
xhjt ≤ 1;∀h = 2,⋯, n − 1 (3-9)  

xijt.ltst ≤ wijt; i = 1,⋯, n − 1, j = 2,⋯, n, ∀t (3-10)  

wijt ≤ xijt.utst; i = 1,⋯, n − 1, j = 2,⋯, n, ∀t (3-11)  

∑n− 1

i=1

∑k

t=1
[wiht + μiht.wiht +ϑiht.xiht + sh.xiht] ≤

∑n

j=2

∑k

t=1
whjt;∀h = 2,⋯, n − 1

(3-12)  

∑n− 1

i=1

∑k

t=1
[wint + μint.wint +ϑint.xint] ≤ cn (3-13)  

∑n− 1

i=1

∑k

t=1
[oh.xiht + sh.xiht] ≤

∑n

j=2

∑k

t=1
whjt;∀h = 2,⋯, n − 1 (3-14)  

∑n

j=2

∑k

t=1
whjt ≤

∑n− 1

i=1

∑k

t=1

(
ch + smin

h

)
.xiht; ∀h = 2,⋯, n − 1 (3-15)  

smin
j .

∑n− 1

i=1

∑k

t=1
xijt ≤ sj ≤ smax

j .
∑n− 1

i=1

∑k

t=1
xijt; ∀j = 2,⋯, n (3-16)  

w1i1 = 0; ∀i = 1,⋯, n (3-17)  

xijt ∈ (0, 1); ∀i, j, t (3-18)  

wijt ∈ [0, tmax]; ∀i, j, t (3-19) 

The objective function (3-7) maximizes the total collected profit. 
Constraint (3-8) ensures that vertex 1 and vertex n are the start and end 
points of the route, respectively. Constraints (3-9) guarantee that each 
vertex is visited at most once, and ensure the flow balance of the route. 
Constraints (3-10) and (3-11) specify the departure time in the appro
priate time slot required to multiply with its related μ and ϑ in Con
straints (3-12) and (3-13). Constraints (3-12) make sure that the 
departure time of the next vertex in the route is larger than or equal to 
the sum of the departure time of the previous vertex together with the 
service time and the travel time. Constraint (3-13) ensures that the 
arrival time to vertex n is not exceeding its closing time. Note that the 
time budget (tmax) is equal to the difference between the closing time of 
the end depot and the opening time of the start depot (cn − o1). So, if the 
opening time of the start depot is set equal to zero (o1 = 0), the time 
budget will be equal to the closing time of the end depot (tmax = cn). 
Constraints (3-14) make sure that at each vertex except from the start 
and the end depot, the departure time does not happen before the 
opening time plus the service time. Constraints (3-15), ensure that the 
departure time is not greater the sum of the closing time and the mini
mum service time of the vertex. Constraints (3-16) ensure that the ser
vice time at each visited vertex is between its minimum and maximum 
service time (smin

i and smax
i ). Moreover, without loss of generality, Con

straints (3-17) ensure that the start time of the route is at time zero and 
there is no waiting at the start depot. 

In comparison with TDOPTW, the difference is in the objective 
function and Constraints (3-12), (3-14), (3-15) and (3-16). Note that 
because of using sj.xijt in Eqs. (3-7), (3-12), and (3-14), this problem is 
modelled as a nonlinear problem. 

3.1. Linearization 

To linearize and solve the model using the linear solver CPLEX, 
auxiliary variables dijt are defined as Eq. (3-20). So that dijt equals to sj if 
xijt = 1, and 0, otherwise. 

dijt = sj.xijt; ∀i, j, t (3-20) 

Using auxiliary variables dijt, a MILP model is developed in which 
nonlinear Eqs. (3-7), (3-12), and (3-14) are linearized by using Eqs. (3- 
21) to (3-27). Note that in this MILP, M is a large enough number and its 
value is set as the upper bound of the continuous and non-negative 

variable sj (Max
{

smax
j ; j = 2,⋯, n

}
). 

Max
∑n− 1

i=1

∑n

j=2

∑k

t=1

[
aj.dijt + bj.xijt

]
(3-21)  

∑n− 1

i=1

∑k

t=1
[wiht + μiht.wiht + ϑiht.xiht + diht] ≤

∑n

j=2

∑k

t=1
whjt; ∀h = 2,⋯, n − 1

(3-22)  

∑n− 1

i=1

∑k

t=1
[oh.xiht + diht] ≤

∑n

j=2

∑k

t=1
whjt;∀h = 2,⋯, n − 1 (3-23)  

dijt − sj ≤ 0; i = 1,⋯, n − 1, j = 2,⋯, n,∀t (3-24)  

dijt ≤ M.xijt; i = 1,⋯, n − 1, j = 2,⋯, n,∀t (3-25)  

sj − dijt +M.xijt ≤ M; i = 1,⋯, n − 1, j = 2,⋯, n, ∀t (3-26)  

dijt ∈
(
0, sj

)
; ∀j, j, t (3-27) 

Consequently, in the presented MILP model for the TDOPTW-STP, 
the objective function is Eq. (3-21), and the constraints are Eqs. (3-8) 
to (3-11), (3-13), (3-15) to (3-19) and, (3-22) to (3-27). 

4. Proposed solution algorithm 

Due to the NP-hardness of the TDOPTW-STP, commercial solvers like 
CPLEX can only solve it for small instances. Furthermore, state of the art 
methods cannot tackle it because of the variable service time. So, it is 
necessary to develop an efficient solution method for the TDOPTW-STP. 
This section of the paper describes the proposed metaheuristic 
algorithm. 

4.1. General structure of the algorithm 

Several metaheuristic methods have been presented in the literature 
to solve various extensions of the OP. Based on the literature, combining 
Variable Neighborhood Search (VNS) or Variable Neighborhood Descent 
(VND) with other metaheuristic algorithms were one of the most 
commonly used approaches due to their favorable results (Divsalar 
et al., 2013, Paydar and Saidi-Mehrabad, 2013, Dib et al., 2017, Divsalar 
et al., 2014). The major characteristic that makes a VND-based meta
heuristic effective for OP variants is the simplicity and flexibility of this 
framework. Very few parameters needs to be set and various neigh
borhood structures can be handled (Divsalar et al., 2013). This latter 
characteristic of the VND makes it handy to apply both profit increasing 
and time saving moves simultaneously (Vansteenwegen and Gunawan, 
2019). This property has been used to design and apply specific local 
search moves, which try to find a good order of visits together with the 
corresponding visit times. 

The proposed algorithm is based on the variable neighborhood 
search (VNS). The general structure of the proposed VNS algorithm is 
illustrated in Algorithm 4.1. The algorithm begins with an Initialization 
phase, described in Section 4.2. Then, an improvement phase is imple
mented iteratively which is described in Section 4.3. NoImprovement 
counts the number of subsequent iterations without improvement and is 
limited by MaxNoImprovement as the stopping criterion of the algorithm. 
MaxNoImprovement is one of the input parameters that is predetermined 

M. Khodadadian et al.                                                                                                                                                                                                                         



Computers and Operations Research 143 (2022) 105794

6

when tuning this VNS.  
Algorithm 4.1 Pseudo code for the VNS 

1: Initialization phase: (Section 4.2) 
2: Preprocessing 
3: S0 ← GenerateInitialSolution; 
4: S* ←VND (S0); 
5: Improvement phase: (Section 4.3) 
6: while NoImprovement < MaxNoImprovement do 
7: S1 ← Shake (S*); (Section 4.3.1) 
8: S2 ← VND (S1); (Section 4.3.2) 
9: S* ←Recentering (S*, S2); (Section 4.3.3) 
10: end while 
11: return S*  

To solve a TDOPTW-STP instance, the main decisions are to determine 
the vertices to visit, and the corresponding departure times and service 
times. The combination of time dependent travel time and variable 
service time is the new challenging part of the TDOPTW-STP. This is 
mainly because in the presence of time dependent travel times, the se
lection of different service times significantly affects the whole route. 
Therefore, to deal with this challenge, the proposed VNS contains new 
contributions compared to the literature. These algorithmic extensions 
and adaptations are explicitly mentioned in each related section. 

4.2. Initialization phase 

This phase includes three steps: Preprocessing, Gen
erateInitialSolution and VND. Similar to the TDOPTW proposed by 
Verbeeck et al. (2017), a sorted set of nearest neighbors is identified for 
each vertex i in the preprocessing step. So firstly, for each vertex i, a list 
of neighbors is defined as a set of vertices j if Eq. (4-1) holds. 

oi + smin
i + ttmin

ij ≤ cj (4-1)  

where, ttmin
ij is the minimum time dependent travel time on arc (i,j). This 

equation guarantees that it is feasible to arrive to vertex j before the 
closing time when leaving at the earliest possible departure time at 
vertex i. 

Unlike the proposed solution algorithm for the TDOPTW by Ver
beeck et al. (2017), preliminary experiments showed that pre-sorting 
neighbors in these lists does not lead to finding higher quality solu
tions or reducing the computational time. These results are included in 
Appendix A. In fact, the combination of time dependency and variable 
service times makes this pre-sorting useless, and it is very likely that 
vertices with lower rank are present in the optimal solution. 

In the second step, GenerateInitialSolution is performed to produce 
an initial solution (S0). This step starts with an empty solution that in
cludes only the start and the end depot. Then, it tries to add, vertices 
(with their minimum service time) to the solution one by one, based on 
the nearest neighbor strategy in terms of NSR (stands for Node Selection 
Ratio) as defined in Eq. (4-2). 

NSR =

{
dprofit2/dtime; dtime > 0

(1 − dtime).dprofit2; dtime ≤ 0 (4-2)  

where, dprofit is equal to minimum profit of the neighbor that might be 
inserted, and dtime is the change in the total travel time of the route if the 
insertion happens. Note that the triangle inequality property might be 
violated in time dependent OP (Verbeeck et al., 2014) which implies 
that we might have a negative dtime by visiting an extra vertex or a 
positive dtime by removing an included vertex. Therefore, in a time 
dependent OP the feasibility should be controlled even when one vertex 
is removed from the solution. 

If the travel time increases, NSR is set equal to dprofit2/dtime. This 

means that the more profit and the less travel time, the more promising 
an insert becomes. Moreover, the square of the profit is applied in NSR 
calculation to give more importance to profit than to travel time. 
Furthermore, if the travel time decreases or stays the same, NSR is set 
equal to (1 − dtime).dprofit2. This means that as dtime becomes more and 
more negative, (1 − dtime) becomes more and more positive, thus arti
ficially increasing the NSR. The purpose is to give vertices that will 
shorten the route, an advantage upon vertices that will lengthen the 
route. 

Finally, the variable neighborhood descent (VND) is executed on the 
initial solution to generate the best solution (S*). VND is described in the 
following subsections. 

4.3. Improvement phase 

In this phase, three steps are implemented, iteratively. Firstly, the 
vertices in the current solution are shaken. The algorithm implements 
the shake as the diversification procedure to better explore the whole 
solution space. Secondly, a VND with various local search moves is 
applied. The algorithm uses VND as the intensification procedure. Af
terwards, in the recentering step, it is decided from which solution the 
next iteration should start. In designing the proposed method to achieve 
an excellent balance between diversification and intensification during 
the search for the best solution, both aspects of vertex and service time 
selection are considered. 

4.3.1. Shake 
VNS escapes from local optima using a shaking phase. In this step, 

the shake proposed by Vansteenwegen et al. (2009) for TOPTW is 
adapted for the TDOPTW-STP and presented in Algorithm 4.2. During 
this phase, one or more included vertices will be removed from the 
current solution. This Shake has two input parameters; the first remove 
position (POSshake) and the number of consecutively included vertices to 
remove (Nshake) in the current solution. For the first iteration, POSshake 
and Nshake are initialized to one. Note that in this algorithm, when 
vertices are removed, because of the time dependency, the solution 
feasibility is re-checked (line 8). Moreover, every recalculation and 
updating of time variables such as travel times and MaxShift are adopted 
according to time dependency. 

In our algorithm, at the end of each iteration, POSshake is increased by 
Nshake, and Nshake is increased by one. As a result, throughout the itera
tions, different parts of the solution, with different number of vertices, 
will be maintained and removed. If the number of vertices in the solu
tion is lower than 4 (including the start and the end depot), POSshake and 
Nshake are reset to one. If POSshake or Nshake is higher than the number of 
vertices in the solution, it is reset to one.  

Algorithm 4.2 Pseudo code for Shake 

1: Remove Nshake included vertices from POSshake to POSshake + Nshake-1 in current 
solution; 

2: for included vertex (exactly) before POSshake do 
3: Recalculate ttijdt; 
4: end for 
5: for each included vertex at and after POSshake do 
6: Recalculate at, wt, sst, dt, ttijdt; 
7: end for 
8: if remove is feasible then 
9: for each included vertex after POSshake do 
10: Update MaxShift; 
11: end for 
12: for each included vertex at and before POSshake do 
13: Calculate MaxShift; 
14: end for 
15: end if  
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4.3.2. VND 
Three local search moves are used in the VND part of the algorithm. 

The pseudo code for the VND is shown in Algorithm 4.3. In this local 
search procedure, the general idea in each iteration is to first insert a 
higher number of vertices with short service time and then prolong the 
service time and or replace vertices if it improves the solution. In an 
overview, the VND starts with Insert-minS which tries to increase the 
total profit by adding a new vertex with its minimum service time. This 
move is designed to intensify the solution by spending time on adding an 
extra vertex rather than increasing service times at visited vertices. The 
VND continues with a Swap move that attempts to decrease the total 
travel time by exchanging two included vertices without any changes in 
their service times. Finding the shortest route between the included 
vertices is not an explicit part of the OP objective. However, the shorter 
the route, the more likely it is that extra vertices can be added or the 
service time of the included ones can be prolonged. Finally, VND per
forms a Replace move that endeavors to increase the total profit by 
removing at least one included vertex and adding at least one new vertex 
with its most appropriate service time. This move itself is composed of 
multiple neighborhood structures designed to intensify the solution by 
finding both proper vertices and service times simultaneously. A visual 
overview of each local search move is provided in Fig. 4.1. In the 
following, an explanation of each move is presented.  

Algorithm 4.3 Pseudo code for VND 

1: Set of 3 neighborhood structures (Nj): Insert-minS, Swap, Replace 
2: j ← 1; 
3: while j ≤ 3 do 
4: S2 ← Apply neighborhood structure Nj on S1 
5: if S2 is better than S1 then 
6: S1 ← S2; 
7: j ← 1; 
8: else 
9: j ← j + 1; 
10: end if 
11: end while 
12: return S2  

4.4. Insert-minS and Swap 

The basic structure of these two moves are taken from Verbeeck et al. 
(2017) and adapted for the TDOPTW-STP. The pseudo codes for Insert- 
minS and Swap are shown in Algorithm 4.4 and Algorithm 4.5, 
respectively. Insert-minS tries to add a new vertex to a position (pos) in 
the current solution in the best improvement manner while Swap at
tempts to exchange two included vertices using the first improvement 
manner. Note that in Insert-minS, the minimum service time is used for 
each inserted vertex, and in Swap, the corresponding service time re
mains unchanged. For more details, we refer to Verbeeck et al. (2017).  

Algorithm 4.4 Pseudo code for Insert-minS 

1: for each non-included neighbor (vertex i) with minimum service time do 
2: for each position in the current solution (pos) do 
3: if Insert vertex i at pos is feasible then 
4: Calculate NSR; 
5: end if 
6: end for 
7: end for 
8: (sel_i,sel_pos) ← Determine the best (i,pos) with highest NSR 
9: Execute Insert for (sel_i,sel_pos); 
10: for the included vertex (exactly) before sel_pos do 
11: Recalculate ttijdt; 
12: end for 
13: for each included vertex at and after sel_pos do 
14: Recalculate at, wt, sst, dt, ttijdt; 
15: end for 
16: for each included vertex after sel_pos do 
17: Update MaxShift; 
18: end for 
19: for each included vertex at and before sel_pos do 
20: Calculate MaxShift; 
21: end for 

Fig. 4.1. Overview of local search moves.  
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Algorithm 4.5 Pseudo code for Swap 

1: for each position in the current solution (pos1) do 
2: for each successor position in the current solution (pos2;pos2 > pos1) do 
3: if Swap vertices at pos1 and pos2 is feasible then 
4: Calculate dtime; 
5: if dtime < 0 then 
6: (sel_pos1,sel_pos2) ← Select pos1 and pos2; 
7: Break; 
8: end if 
9: end if 
10: end for 
11: if dtime < 0 then 
12: Break; 
13: end if 
14: end for 
15: Execute Swap for (sel_pos1, sel_pos2); 
16: for included vertex (exactly) before sel_pos1 do 
17: Recalculate ttijdt; 
18: end for 
19: for each included vertex at and after sel_pos1 do 
20: Recalculate at, wt, sst, dt, ttijdt; 
21: end for 
22: for each included vertex after sel_pos2 do 
23: Update MaxShift; 
24: end for 
25: for each included vertex at and before sel_pos2 do 
26: Calculate MaxShift; 
27: end for  

After executing a move, it is required for some included vertices to 
recalculate their arrival time (at), start of service time (sst), waiting time 
(wt), departure time (dt), and travel time to successor (ttijdt). In the 
pseudo codes, this step is called “Recalculate” followed by the time 
parameter. 

Vansteenwegen et al. (2009) defined MaxShift as “the maximum time 
that the service time completion of a given visit can be delayed, without 
making any visit infeasible”. For TDOPTW, Verbeeck et al. (2017) pro
posed a backward algorithm for calculation of MaxShift which we call 
“Calculate MaxShift”. Furthermore, they proposed the following formula 
to “Update MaxShift” for a specific vertex i. 

MaxShiftnew
i = MaxShiftprevious

i +(dtprevious
i − dtnew

i ) (4-3) 

MaxShift is being used in every local move, wherever an insertion is 
evaluated for feasibility. Keeping track of MaxShift allows to locally 
evaluate the impact of local search moves. This significantly reduces the 
required calculation time. In our algorithm for TDOPTW-STP, MaxShift 
of an included vertex is calculated without changing the service time of 
the succeeding vertices and indicates the time that is available for 
increasing its service time or inserting a new vertex into route, without 
turning the solution infeasible. 

4.5. Replace 

Algorithm 4.6 illustrates the pseudo code for Replace. This local 
search move first removes Nr vertices from the current solution, and 
then inserts as many vertices as possible in the solution, one by one. In 
fact, a combination of Nr removed vertices and a list of candidate 
vertices for insertion together with their best possible insertion position 
as well as their corresponding service time is called a feasible combi
nation. The feasible combination with the highest dprofit will be 
executed as the best feasible combination. This process is called 
“Determine the feasible Replace” in this pseudo code and is presented in 
detail in Algorithm 4.7. After execution of the move, at, sst, wt, dt, ttijdt 
and MaxShift for all included vertices are recalculated. For each Nr from 
1 to Nrmax, the Replace is performed based on the best improvement 
strategy where Nrmax is an input parameter of the algorithm and has to 

be predetermined.  
Algorithm 4.6 Pseudo code for Replace 

1: for Nr = 1 to Nrmax do 
2: for pos1 = 2 to SolSize-Nr (in the current solution) do 
3: Determine the feasible Replace for (Nr,pos1); 
4: Calculate dprofit; 
5: end for 
6: sel_pos1 ← Determine the best (pos1) with highest dprofit > 0; 
7: Execute Replace for (Nr,sel_pos1); 
8: end for 
9: for each included vertex do 
10: Recalculate at, wt, sst, dt, ttijdt; 
11: Calculate MaxShift; 
12: end for  

In Algorithm 4.7, first, Nr consecutive included vertices are removed 
from a predetermined place within the current solution, and then, as 
many non-included vertices as possible are inserted, while the best 
service time combination is considered. Note that in this algorithm, 
when Nr vertices are removed, because of the time dependency, the 
solution feasibility is re-checked (line 8). Moreover, the way that a 
neighbor vertex is selected for insertion in Replace (Insert-varS; line 16) 
is different to the Insert-minS move in terms of considering the variable 
service time. The details of Insert-varS are shown in Algorithm 4.8.  

Algorithm 4.7 Pseudo code for “Determine the feasible Replace” for (Nr,pos1) 

1: Remove Nr included vertices from pos1 to pos1 + Nr-1 in current solution; 
2: for included vertex (exactly) before pos1 do 
3: Recalculate ttijdt; 
4: end for 
5: for each included vertex at and after pos1 do 
6: Recalculate at, wt, sst, dt, ttijdt; 
7: end for 
8: if remove is feasible then 
9: for each included vertex after pos1 do 
10: Update MaxShift; 
11: end for 
12: for each included vertex at and before pos1 do 
13: Calculate MaxShift; 
14: end for 
15: while more improvement is possible do 
16: Insert-varS; 
17: end while 
18: end if  

In the Insert-varS (Algorithm 4.8), the service time for each candidate 
vertex is selected between its minimum and maximum possible values 
by FindBestS (Algorithm 4.9). For each solution, the insertion position 
and the selected vertex for insertion, it is first checked if insertion with 
the minimum service time is feasible, afterwards, an attempt is made to 
find the maximum feasible service time for the considered vertex. 

Algorithm 4.9 shows the details on how service times are set when a 
vertex is considered for insertion. According to this algorithm, If vertex r 
is considered for insertion between vertices i and j, the FindBestS per
forms the following steps to find the best possible service time for vertex 
r.  

a. Define at1
j as the latest possible arrival time to j, which equals 

atj +wtj +MaxShiftj representing the arrival time, waiting time and 

MaxShift of j in the current solution, respectively. So, dt1
r is the latest 

departure time of r, calculated based on at1j by using a backward 
calculation process (calculate_departure_time introduced by Ver
beeck et al. (2017)). Note that if dt1r is larger than cr + smin

r , cr +smin
r is 

assigned to it.  
b. It is checked if the insertion of vertex r with sr = smin

r is feasible. If not, 
the process stops and the next vertex will be evaluated for insertion. 
Otherwise, it is checked if the insertion of vertex r with sr = smax

r is 
feasible. 
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c. If the insertion of vertex r with sr = smax
r is feasible, the smax

r is 
selected as the service time of r and the process stops. Otherwise, to 
find the best feasible service time (smin

r ≤ sr < smax
r ), the following 

steps are iteratively performed.  
I. During this step, based on the insertion of r with service time sr, first, 

the new arrival time of vertex j (at2
j ), and then, the new departure 

time (dt2r ) are calculated. The change in the arrival time of the vertex 
j because of this insertion is called shiftj (introduced by Van
steenwegen et al. (2009)). The shiftj will be used in the feasibility 
check.  

II. In this step, sr is updated to sr + dt1r − dt2r . Note that, dt1r ≤ dt2r . If sr is 
less than smin

r , it is set equal to smin
r . Then, with this sr, the feasibility of 

insertion is checked again. These steps are repeated until a feasible sr 
is found. 

In addition, in order to clarify the procedure, the corresponding 
flowchart and a numerical example with arbitrary values can be found in 
Appendix B.  

Algorithm 4.8 Pseudo code for Insert-varS 

1: for each non-included neighbor vertex (i) do 
2: for each position in the current solution (pos) do 
3: (sel_st) ← Execute FindBestS to Determine the best feasible service time for vertex 

(i); 
4: Calculate NSR; 
5: end for 
6:end for 
7: (sel_i,sel_pos,sel_st) ← Determine the best (i,pos,sel_st) with highest NSR 
8: Execute Insert for (sel_i,sel_pos,sel_st); 
9: for included vertex (exactly) before sel_pos do 
10: Recalculate ttijdt; 
11: end for 
12: for each included vertex at and after sel_pos do 
13: Recalculate at, wt, sst, dt, ttijdt; 
14: end for 
15: for each included vertex after sel_pos do 
16: Update MaxShift; 
17: end for 
18: for each included vertex at and before sel_pos do 
19: Calculate MaxShift; 
20: end for   

Algorithm 4.9 Pseudo code for FindBestS (for Insert r between i and j) 

1: at1j ←atj + wtj + MaxShiftj 
2: dt1r ← calculate_departure_time (at1j ) 
3: if (dt1r > cr + smin

r ) then 
4: dt1r ←cr + smin

r 
5: end if 
6: if insert r with sr = smin

r is feasible then 
7: sr ←smax

r 
8: while insert r with sr is not feasible then 
9: Calculate shiftj 
10: at2j ←atj + shiftj 
11: dt2r ← calculate_departure_time (at2j ) 
12: sr ←sr + dt1r − dt2r 
13: If (sr < smin

r ) then 
14: sr ←smin

r 
15: end if 
16: end while 
17: end if  

4.5.1. Recentering 
Each time the shaking and the VND steps are performed, the algo

rithm compares the current solution with the best solution obtained so 
far. If the current solution is better than the best found solution, the 
recentering phase is performed and the best solution is replaced by the 
current solution, and the NoImprovement is initialized to 0. Otherwise, 
NoImprovement is increased by 1. 

5. Results and discussion 

In this section, the performance of the proposed VNS is analyzed 
using various numerical experiments. Since no test instances are avail
able for the TDOPTW-STP, in Section 5.1, two different sets of instances 
are generated based on the TDOPTW benchmark instances. In Section 
5.2, first, the set of input parameters of the proposed algorithm are 
tuned, and then, the results of the VNS are evaluated over TDOPTW 
instances and the generated TDOPTW-STP instances with known 
optimal (best) solutions. In Section 5.3, a real-world data set from the 
city of Shiraz (Iran) is used to show the applicability and suitability of 
the proposed problem and solution method. All generated instances 
including Sets 1 and 2, as well as real data instance of Shiraz are 
available online at https://www.mech.kuleuven.be/en/cib/op/ 

5.1. Test instances 

Verbeeck et al. (2017) created 36 benchmark instances with 20, 50 
and 100 vertices for the TDOPTW with an optimal (best known) solution 
available at https://www.mech.kuleuven.be/en/cib/op/. In this sec
tion, two sets of instances are generated. In the first set (Set 1), TDOPTW 
instances with 20 vertices and 56 time slots are used. For these instances, 
opening times, closing times, the time dependent travel times, and time 
budget are retained. Then, to create the variable profit properties, for 
each vertex, the current service time and profit are used as the minimum 
service time (smin

i ) and the minimum profit (pmin
i ). The maximum service 

time (smax
i ) and profit (pmax

i ) are then generated by applying two random 
coefficients between 1 and 2 multiplied by the corresponding smin

i , and 
pmin

i . Using this process, some small instances (up to 20 vertices and up to 
56 time slots) are developed for the TDOPTW-STP and solved to opti
mality using the implemented mathematical model in CPLEX. 

In the second set (Set 2), a procedure is designed to generate 
TDOPTW-STP instances based on TDOPTW instances so that their 
optimal (best known) solution becomes the optimal solution for the 
TDOPTW-STP. The pseudo code for this procedure is presented in Al
gorithm 5.1. In this procedure, in the first step, for each vertex, the 
deterministic service time, and profit of the vertex in the TDOPTW 
instance is set as the maximum of service time (smax

i ) and the maximum 
profit (pmax

i ), respectively and then all vertices are divided into two 
parts: The ones included in the optimal (best known) sequence, and the 
non-included ones. The main idea is to first keep the optimal (best 
known) solution of the TDOPTW feasible for the TDOPTW-STP and then 
to force the rest of vertices in an unattractive situation (lower profit, 
higher minimum service time, and lower linear profit coefficient) where 
generating a new solution with higher profit would not be possible. It 
should be noted that, however, in the case of having only a best known 
solution for the TDOPTW (and not an optimal one) in hand, it is always 
possible to find a better sequence of vertices also for the TDOPTW-STP. 

In the second step, for each included vertex, by selecting two random 
factors between 0 and 1 (rand1 and rand2), and multiplying them with 
the corresponding smax

i , and pmax
i , the minimum service time (smin

i ) and 
the minimum profit (pmin

i ) is generated. Furthermore, for each vertex, 
the slope coefficient of the linear profit (ai) is calculated by dividing the 
pmax

i − pmin
i over smax

i − smin
i . Then, the minimum value of the set of the 

minimum profits over all vertices (min_pmin), the maximum value of the 
set of the maximum service times over all vertices (max_smax), and the 
minimum value of the set of the slope coefficient of the linear profits 
over all vertices (min_a) are calculated. At last, it is necessary to adapt 
the closing time of vertices for the ones included in the optimal (best 
known) solution. So, for each included vertex, the closing time of the 
vertex in the TDOPTW instance plus smax

i − smin
i is set as the closing time 

of each included vertex. For example, for included vertex r, if cr = 20, 
smax
r = 3, and smin

r = 1, closing time of vertex r will be 22 in Set 2. Note 
that due to constraint (3-29), if cr would remain 20, the TDOPTW so
lution might become infeasible for TDOPTW-STP. So far, we make sure 
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that the optimal solution of the TDOPTW instance remains feasible for 
the TDOPTW-STP. 

In the third step, for each non-included vertex, the minimum value of 
{ pmax

i , rand3i* min_pmin } in which, rand3 is again a random factor be
tween 0 and 1, is assigned to vertex i as its corresponding pmax

i . Then, the 
minimum profit (pmin

i ) is calculated, as the result of a new random factor 
between 0 and 1 (rand4) multiplied by pmax

i . Furthermore, the maximum 
value of { smax

i , rand5i* max_smax } in which, rand5 is a new random 
factor greater than 1, is assigned to smin

i that is greater than max_smax 
value. Then, by using another random factor between 0 and 1 (rand6), 
and multiplying it with the min_a value, the slope coefficient (ai) is 
created in order that it stays lower than min_a value. Finally, according 
to the generated smin

i , pmax
i , pmin

i , and ai, the corresponding smax
i is 

calculated. 
Our motivation for this procedure is to keep the pmax

i and ai values of 
non-included vertices lower than the min_pmin and the min_a values, and 
keeping the smin

i value of non-included vertices higher than the max_smax 
value, and therefore to make the non-included vertices not interesting 
enough to be selected in the TDOPTW-STP optimal solution.  

Algorithm 5.1 Pseudo code for generating Set 2 

1: for each vertex i do 
2: smax

i ←si; 
3: pmax

i ←pi; 
4: end for 
5: Determine included vertices and non-included vertices in TDOPTW optimal 

(best known) solution; 
6: for each included vertex i do 
7: Generate random numbers: 
8: 0 < rand1i < 1; 
9: 0 < rand2i < 1; 
10: Calculate: 
11: smin

i = rand1i*smax
i →0 < smin

i < smax
i ; 

12: pmin
i = rand2i*pmax

i →0 < pmin
i < pmax

i ; 
13: ai =

(
pmax

i − pmin
i

)/(
smax
i − smin

i
)
; 

14: ci ←ci + smax
i − smin

i ; 
15: end for 
16: for all included vertices do 
17: Calculate: 
18: max_smax = max { smax

i }; 
19: min_pmin = min { pmin

i }; 
20: min_a = min {ai}; 
21: end for 
22: for each non-included vertex i do 
23: Generate random numbers: 
24: 0 < rand3i < 1; 
25: 0 < rand4i < 1; 
26: rand5i > 1; 
27: 0 < rand6i < 1; 
28: Calculate: 
29: pmax

i = min { pmax
i , rand3i* min_pmin } → 0 < pmax

i < min_pmin; 
30: pmin

i = rand4i* pmax
i → 0 < pmin

i < pmax
i ; 

31: smin
i = max { smax

i, rand5i* max_smax } → max_smax < smin
i ; 

32: ai = rand6i* min_a → 0 < ai < min_a; 
33: smax

i = smin
i +

[(
pmax

i − pmin
i

)/
ai
]
; 

34: end for  

5.2. Numerical experiments 

The proposed algorithm is implemented in Visual C++ 2010 and the 
experiments are performed using a laptop with Intel Core i7 CPU M 640 
@ 2.80 GHz processor and 8.00 GB Ram. In the proposed algorithm, 
there exist 2 input parameters for tuning: MaxNoImprovement and Nrmax. 
In order to determine these parameters, a number of primary tests are 
done. Firstly, 14 instances are randomly selected from Sets 1 and 2 of the 
TDOPTW-STP, and for each of the parameters, three different values are 
determined (MaxNoImprovement = n/3, n/4, n/5 and Nrmax = 1, 2, 3). 
Then, the algorithm is applied on the selected set for all 9 possible 
combinations of different values of parameters, and the appropriate 
combination is chosen based on a balance between solution quality and 

the computation time. As a result, the parameters are set as follow: 
MaxNoImprovement = n/5 and Nrmax = 2. 

The first set of experiments is performed on the TDOPTW set of 
Verbeeck et al. (2017). Our proposed method is compared with the re
sults of the Ant Colony System (ACS) by Verbeeck et al. (2017). The 
results are displayed in Table 5.1. In this table, the first column gives the 
instance names. The second and third columns show the results of the 
ACS. Contrary to our VNS, the ACS contains randomness. Therefore, we 
run our method only once, and compare the results to the average results 
of the ACS. Moreover, to have a fare comparison of CPU times, the ACS 
code is rerun on the same system configuration as our VNS is run. Thus, 
due to the existing randomness as well as improvement in the ACS, the 
presented results in this table are slightly different from the ones pre
sented in Verbeeck et al. (2017). The fourth to sixth columns show the 
results of the proposed VNS. 

The profit gap is presented as 100* (ACS profit - VNS profit) / ACS 
profit, and the CPU shows the computation time in seconds. Note that for 
running the VNS on this set, we set smax

i = smin
i = si and pmax

i = pmin
i = pi. 

It should be noted that, the VNS is designed to solve the TDOPTW 
problem when the service time is not fixed and the profit depends on the 
duration of stay at each vertex (TDOPTW-STP), and, our algorithm is 
tuned for the TDOPTW-STP. However, our aim is to compare the pro
posed method over the TDOPTW problem to show that the performance 
of the proposed VNS is acceptable for this problem. 

Looking at the results, it can be seen that in total, for 36 instances of 
TDOPTW, in 10 instances, the gap is zero. The VNS could improve the 
best known results in 2 instances, and in 24 instances the ACS gives 
better results. Furthermore, the average and maximum gaps are 2.5 and 

Table 5.1 
Detailed results of solution algorithms on TDOPTW set.  

Instance ACS VNS  

Profit CPU (Sec) Profit Profit gap (%) CPU (Sec) 

20.1.1 159  0.1 159  0.0  0.01 
20.1.2 173  0.1 173  0.0  0.01 
20.1.3 184  0.1 184  0.0  0.01 
20.2.1 188  0.1 188  0.0  0.02 
20.2.2 201  0.1 195  3.0  0.01 
20.2.3 195  0.1 179  8.2  0.01 
20.3.1 277  0.1 253  8.7  0.01 
20.3.2 246  0.1 246  0.0  0.03 
20.3.3 259  0.1 259  0.0  0.04 
20.4.1 274  0.1 262  4.4  0.02 
20.4.2 275  0.2 258  6.2  0.02 
20.4.3 268  0.1 255  4.9  0.01 
50.1.1 288  0.2 279  3.1  0.04 
50.1.2 274  0.2 274  0.0  0.05 
50.1.3 289  0.3 289  0.0  0.05 
50.2.1 298  0.3 298  0.0  0.10 
50.2.2 310  0.3 291  6.1  0.13 
50.2.3 340  0.4 340  0.0  0.13 
50.3.1 339  0.3 326  3.8  0.11 
50.3.2 404  0.4 374  7.4  0.09 
50.3.3 366  0.5 362  1.1  0.29 
50.4.1 476.6  0.5 478  − 0.3  0.26 
50.4.2 439.8  0.6 429  2.5  0.13 
50.4.3 450  0.6 431  4.2  0.19 
100.1.1 275  0.4 258  6.2  0.19 
100.1.2 278  0.4 276  0.7  0.19 
100.1.3 343  0.6 335  2.3  0.43 
100.2.1 351.2  0.5 349  0.6  0.55 
100.2.2 366.6  0.5 343  6.4  0.28 
100.2.3 370  0.6 359  3.0  0.77 
100.3.1 436  0.7 417  4.4  0.73 
100.3.2 446.6  0.7 437  2.1  1.02 
100.3.3 467  0.9 462  1.1  1.34 
100.4.1 484  1.0 480  0.8  1.09 
100.4.2 494.6  0.9 495  − 0.1  1.03 
100.4.3 526.8  1.0 526  0.2  1.37 
Max   1.0   8.7  1.4 
Avg   0.4   2.5  0.3  
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8.7% and the average and maximum computation times are 0.30 and 
1.4 s. 

In the next set of experiments, our algorithm is applied on Set 1 of the 
new test instances (introduced in Section 5.1). Results are presented in 
Table 5.2. For Set 1, only 6 instances were solved optimally using CPLEX 

12.8 and the profit gap (%) is defined as “100*(CPLEX profit - VNS 
profit) / CPLEX profit”. 

The results display the correctness of the proposed mathematical 
model, and the immoderate time required to find optimal solutions for 
these small instances using a commercial solver. By applying the VNS on 
these 6 instances of Set 1, the optimal solution is found in 3 instances. In 
addition, the average gap is only 0.54 % and the average computation 
time is 0.03 s. 

In the third step, our algorithm is applied on Set 2 of the test in
stances. Results are presented in Tables 5.3 and 5.4. Similar to Table 5.1, 
for Set 2, the results are compared to best known solutions of Verbeeck 
et al. (2017). However, the difference is that, here the service time is not 
fixed. In Table 5.4, the Gap and the CPU time of the results of Set 2 are 
presented per instance size. 

For Set 2, in 24 out of 36 instances, the best known solution is found, 
and the best known results are improved in 5 instances. The average gap 
and the maximum gap are only 0.03 % and 1.86 %, respectively. These 
results prove the high performance quality of the proposed VNS. In 
addition, the average and the maximum computation times (CPU) are 
0.60 and 3.30 s which show that the proposed VNS is fast enough for 
most application purposes. When comparing the average results of 
different sizes of instances in Set 2, it can be seen that for all instances 
with 20 vertices, the best known solution is found, the maximum profit 
gap (%) belongs to the instances with 50 vertices, and the maximum 
CPU time belongs to instances with 100 vertices. We may conclude that 
when the size of instances are getting larger in terms of the number of 
vertices, the VNS is still able to find high-quality solutions. 

5.3. Real-world instance 

The purpose of this section is to create a real instance for the 
TDOPTW-STP, to perform a sensitivity analysis to show the potential use 
of the model in a real application, and to demonstrate the importance of 
variable service times, leading to higher profits than any kind of prefixed 
service times (min, average or max). Moreover, it shows that in case of 
congested (road) networks, our formulation and solution approach is 
required to obtain high quality solutions. Because of the various tourist 
attractions, the city of Shiraz with approximately 240 km2 area and 1.6 
million population, is one of the top three tourist destinations in Iran for 
both domestic and international tourists. In this section, a real data set is 
created based on the urban road network of Shiraz. 

5.3.1. Data generation 
In a real TDOPTW-STP instance, travel times between POIs are var

iable and rely on the time of the day. Each POI has a time window and 
service time dependent profit. The profit is defined as a linear function of 
the service time and has lower and upper bounds. Which means, that at 
each POI, the minimum visit time should be spent to gain the minimum 
profit. After that, the longer the visit time, the higher the profit collected 
by the tourist, so that the profit increases with a constant slope (profit 
per unit time) until it reaches its maximum value. The required infor
mation to make the TDOPTW-STP instance can be divided into three 
general categories; specifications of POIs (including location, time 
window, and maximum and minimum service times), network infor
mation (including time dependent travel times between origin
–destination pairs during the day) and tourist considerations (including 
tour time budget, and maximum and minimum profits of POIs). Each of 
these would be described below. 

5.3.1.1. POI data. One hotel (as the start and the end depot) and 38 
POIs in the city are selected, and their coordinates (latitude and longi
tude) are extracted using GoogleMaps. Geographical distribution of all 
vertices (POIs and the hotel) as well as major streets of the city are 
shown in Fig. 5.1. In this study, the Royal hotel located in Abolkalam 
square is considered as both the start and the end depot (vertex number 

Table 5.2 
Detailed results of solution algorithms on Set 1.  

Instance CPLEX VNS  

Profit CPU (Sec) Profit Profit gap (%) CPU (Sec) 

20.1.1  215.2 9534  211.1  1.91  0.05 
20.1.2  221.9 7321  221.9  0.00  0.02 
20.1.3  236.3 27,479  236.3  0.00  0.02 
20.2.1  239.8 47,961  237.1  1.13  0.02 
20.2.2  258.8 25,405  258.3  0.19  0.02 
20.2.3  240.1 99,956  240.1  0.00  0.03 
Max  99,956   1.91  0.05 
Ave  36,276   0.54  0.03  

Table 5.3 
Detailed results of solution algorithms on Set 2.  

Instance Best known Solution VNS  

Profit Profit Profit gap (%) CPU (Sec) 

20.1.1 159  159.0  0.00  0.02 
20.1.2 173  173.0  0.00  0.01 
20.1.3 184  184.0  0.00  0.02 
20.2.1 188  188.0  0.00  0.02 
20.2.2 201  201.0  0.00  0.02 
20.2.3 195  195.0  0.00  0.03 
20.3.1 277  277.0  0.00  0.06 
20.3.2 246  246.0  0.00  0.03 
20.3.3 259  259.0  0.00  0.03 
20.4.1 274  274.0  0.00  0.12 
20.4.2 275  275.0  0.00  0.04 
20.4.3 268  268.0  0.00  0.10 
50.1.1 288  288.0  0.00  0.12 
50.1.2 274  274.0  0.00  0.24 
50.1.3 289  289.0  0.00  0.11 
50.2.1 298  298.0  0.00  0.21 
50.2.2 310  310.0  0.00  0.09 
50.2.3 340  340.0  0.00  0.34 
50.3.1 339  332.7  1.86  0.18 
50.3.2 404  404.0  0.00  0.21 
50.3.3 366  362.0  1.09  0.36 
50.4.1 476.6  473.8  0.59  0.73 
50.4.2 439.8  434.0  1.32  0.37 
50.4.3 450  450.0  0.00  0.38 
100.1.1 275  275.0  0.00  0.49 
100.1.2 278  276.0  0.72  0.38 
100.1.3 343  343.0  0.00  1.04 
100.2.1 351.2  351.0  0.06  1.18 
100.2.2 366.6  362.8  1.04  1.52 
100.2.3 370  370.0  0.00  1.19 
100.3.1 436  437.0  − 0.23  1.74 
100.3.2 446.6  454.0  − 1.66  1.58 
100.3.3 467  470.0  − 0.64  1.57 
100.4.1 484  484.0  0.00  2.31 
100.4.2 494.6  497.0  − 0.49  1.52 
100.4.3 526.8  540.0  − 2.51  3.30 
Max    1.86  3.30 
Ave    0.03  0.60  

Table 5.4 
% Gap and CPU time per dataset in Set 2.  

n Max profit gap 
(%) 

Ave profit gap 
(%) 

Max CPU 
(Sec) 

Ave CPU 
(Sec) 

20  0.00  0.00  0.12  0.04 
50  1.86  0.40  0.73  0.28 
100  1.04  − 0.31  3.30  1.48  
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1 in Fig. 5.1). The opening time of the depot is set equal to 6:00 and its 
profit is considered zero. For other places, the start time is between 6:00 
and 15:00, the end time is between 15:00 and 23:00. Information and 
comments in local tourism websites have been used to collect these real 
data. According to this information, the maximum service times are 
between 30 and 90 min. Then, the minimum service time for each vertex 
is generated by multiplying a random percentage between 60 and 80 % 
by its maximum value. Properties of POIs in this instance can be found in 
Appendix C. 

5.3.1.2. Network data. Travel times of the road network vary during the 
day depending on the traffic volume, congestion, and delay, and 
generally increases during peak periods and decreases during off-peak 
periods. To develop the real time dependent travel times on the traffic 
network of Shiraz, the day time between 6 am and 10 pm is divided into 
65 time slots of 15 min, and for each time slot, a travel time matrix with 
dimensions of 39 by 39 is created. The details on how to produce these 
matrices are explained in Appendix D. 

5.3.1.3. Tourist considerations. It should be noted that, in the tourist trip 

Fig. 5.1. Selected POIs in the city of Shiraz.  

Fig. 5.2. The sequence of visits for Sce 0.  

Table 5.5 
Detailed program for Sce 0.  

Item Unit Start depot Other included vertices End depot 

vertex - hotel 21 5 27 22 12 14 25 10 23 26 3 28 4 7 hotel 

at hr  6.0  6.1  7.2  8.0  8.6  9.5  11.1  12.3  13.5  13.9  15.2  15.8  17.1  17.7  19.1  20.0 
wt hr  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
sst hr  6.0  6.1  7.2  8.0  8.6  9.5  11.1  12.3  13.5  13.9  15.2  15.8  17.1  17.7  19.1  20.0 
s min  0.0  61.0  40.0  31.3  53.0  85.0  65.0  65.0  21.0  75.0  30.0  70.0  32.0  70.0  55.0  0.0 
dt hr  6.0  7.2  7.9  8.5  9.5  10.9  12.2  13.4  13.8  15.2  15.7  17.0  17.6  18.9  20.0  20.0 
tt min  8.1  4.2  6.8  3.0  2.7  13.4  5.1  5.3  6.2  1.5  7.8  4.1  6.5  10.2  1.9  – 

at: arrival time, wt: waiting time, sst: start of service time, s: service time, dt: departure time, tt: travel time. 
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planning, the aim is to provide a personalized plan for a specific tourist 
according to his/her known preferences. Therefore, tourist consider
ations including the time budget and the minimum and maximum 
profits for each POI depend on the personal preferences of that tourist. In 
this study, we consider an arbitrary tourist, and related tourist data are 
generated as follows. 

According to Eqs. (3-1) to (3-3), for each POI, the profit function is 
generated by estimating four values of minimum and maximum service 
time and profit. As explained earlier, minimum and maximum service 
times are properties of the POIs. However, maximum and minimum 
profits that can be obtained from visiting a POI depends on the personal 
preferences of the tourist, and in practice can be directly asked from 
him/her. An efficient way of finding these profits based on user pref
erences is itself an ongoing research subject (Tarantino et al., 2019), and 
is beyond the scope of this paper. In this research, preferences are 
generated based on an average tourist behavior taken from average 
visitors’ ratings provided by Google Maps. The Google Maps rating is 
translated to maximum profit of each POI using a similar strategy as 
explained in Jandaghi et al. (2021), and normalized between 10 and 30. 
The minimum profit for each vertex is generated by multiplying a 
random number between 0.65 and 0.75 by its maximum value. The time 
budget is assumed to be equal to 14 h. So, based on tmax = cn − o1, The 
closing time of hotel (depot) is set equal to 20:00. 

5.3.2. Experiments and analysis 
To evaluate the performance of the proposed model and the solution 

method, a number of scenarios are created. These scenarios are 
explained in this section. First, the above-explained generated TDOPTW- 
STP instance is called the base scenario (Sce 0). The proposed solution 
algorithm is implemented on this base instance (Sce 0) and the result is 
shown in Fig. 5.2. In this figure, the presented sequence of visits does not 
necessarily show the selected road routes. This is because in practice the 
selected road is affected by access restrictions due to the directions of 
road, geometric design of roads and intersections, and traffic congestion. 
Other details of the proposed tour are presented in Table 5.5. According 
to the suggested plan, out of 38 possible POIs, the tourist may visit 14 
POIs gaining 274.025 as the profit during 14 h. Note that out of 14 
visited POIs, 9 POIs with maximum service time, three POIs with min
imum service time and two POIs with a service time between maximum 
and minimum service times have been suggested. 

In order to analyze the sensitivity of the solution algorithm to the 
input data, five other scenarios are generated based on the base scenario 
(Sce i, i ∈ {1, ⋯5}). In Sce 1-Max, Sce 1-Ave and Sce 1-Min 
(TDOPTW), the service time and the profit of POIs are fixed and 
respectively equal to their maximum, average and minimum values in 

TDOPTW-STP. In Sce 2, the impact of time windows of all POIs are 
removed by setting them from 6 am to 11 pm (TDOP-STP). In Sce 3, the 
travel times between vertices are fixed (OPTW-STP). In this scenario, we 
set all travel times equal to the travel time at 12:00 (one of the peak 
periods of traffic). In Sce 4, the time budget is reduced from 14 h to 12 h, 
and, in Sce 5, the start time of the daily tour (opening time of the start 
depot) has changed from 6 am to 7.5 am. The proposed VNS is used for 
all these scenarios and the results are summarized in Table 5.6. In the 
last two columns, two criteria (Imp and Div) are defined to compare the 
results of scenarios. Imp shows the percentage improvement in total 
profit when the TDOPTW-STP is used versus other problem variants. It is 
calculated as 100* (profit of Sce 0 - profit of Sce x) / profit of Sce x, 
where Sce x is the considered scenario number. The second index, Div 
shows the diversity between two different solutions. Div index between 
two solutions A and B is calculated as the sum of the number of vertices 
in A not present in B and the number of vertices in B not present in A, and 
the number of same vertices in both solutions with different service 
times, divided by the total number of vertices present in A and B. 

One main comparison which shows the effectiveness of having var
iable service times in such tourist application is when we compare the 
TDOPTW-STP against its fixed service time variant (TDOPTW). In Sce 1, 
three versions of service times and the corresponding profits are 
considered. Compared to the base scenario (Sce 0), the profit is 
decreased by 1.47% in Sce 1-Max, 5.48% In Sce 1-Ave, and 10.59% in 
Sce1-Min. For this instance, these comparisons clearly illustrate, the 
added value of considering a TDOPTW-STP, where service times can be 
optimized, instead of a regular TDOPTW. Moreover, the presented 
values in Div column shows that the TDOPTW-STP solution is signifi
cantly different versus the TDOPTW solutions. 

In Sce 2 (TDOP-STP), when time windows are widened, included 
vertices and their sequence and service times have changed. Due to the 
flexibility in time windows, higher total profit is gained in lower total 
tour time. As expected, less binding time windows lead to a higher 
quality solution. In Sce 3 (OPTW-STP), travel times during the day are 
assumed as fixed and time independent to show the higher impact of 
service time dependent profit in the presence of time dependent travel 
times. Thus, when compared with the Sce 0, the algorithm is not flexible 
in selecting more appropriate travel times, thereby, less profits are 
collected. Note that in this scenario, the number of time slots is equal to 
one, while in other instances, it is equal to 65. As a result of ignoring the 
time dependency, the solution has around 3% lower quality with around 
37% different vertices/service times. In Sce 4, by decreasing the time 
budget, the total profit is reduced by around 14%, while the solution is 
around 33% different to the solution of Sce 0. 

In Sce 5, the start time of the tour has been changed from 6 am to 7.5 

Table 5.6 
Results of the solution algorithm on all scenarios.  

Scenario Problem Profit # of visited POIs Tour time (hr) CPU (sec) Imp (%) Div (%) 

Sce 0 TDOPTW-STP  274.025 14  14.000  0.915  –  – 
Sce 1-Max TDOPTW  270.000 12  13.963  0.109  1.47  19.23 
Sce 1-Ave TDOPTW  259.000 14  13.920  0.308  5.48  53.57 
Sce 1-Min TDOPTW  245.000 16  13.919  0.123  10.59  46.67 
Sce 2 TDOP-STP  277.276 14  13.566  0.446  − 1.19  25.00 
Sce 3 OPTW-STP  266.248 13  13.985  0.371  2.84  37.04 
Sce 4 TDOPTW-STP  236.534 13  11.452  0.341  13.68  33.33 
Sce 5 TDOPTW-STP  275.707 15  14.000  0.450  − 0.61  44.83  

Table 5.7 
Sensitivity analyses of tour efficiency.  

Scenario Problem Profit Tour time (hr) Useful time (hr) Useful time/time budget 

Sce 1-Max TDOPTW 270 13.963  12.500  89.3% 
Sce 0 TDOPTW-STP 274.025 14  12.554  89.7% 
Sce 1-Max-3 TDOPTW 226 13.6739  10.500  75.0% 
Sce 0–3 TDOPTW-STP 233.516 14  10.798  77.1%  
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am, and accordingly, the opening time of the hotel has been adapted to 
7.5 am. In other words, in this scenario, the tour starts later compared to 
Sce 0. Despite this change in the start time of tour, the total profit of Sce 
5 is slightly more than that of Sce 0. This is because most of the POIs are 
closed between 6 and 7.5 in the morning, and therefore starting the tour 
1.5 h later gives the opportunity to use the time budget more efficiently. 
Comparing these 8 scenarios, the minimum CPU is equal to 0.109 s for 
Sce 1-Max (TDOPTW) and the maximum CPU is equal to 0.915 s for Sce 
0 (TDOPTW-STP) which is due to the change in the size of the search 
space. According to this analysis, the quality and the computational time 
of the proposed method seems appropriate to be used in tourist websites 
and mobile applications. 

Summing up, the conclusion of these experiments is twofold. Firstly, 
having time dependency and service time dependent profits together is 
the more appropriate way of modeling the tourist trip planning problem, 
and secondly, the proposed VNS works correctly and effectively in 
practice, as can be seen from the obtained solutions in different sce
narios. Another relevant and important analyses, is to examine the sit
uations where the TDOPTW-STP is more effective for the tourist trip 
planning in practice. For a tourist, in a proposed route, travel times and 
waiting times are counted as useless times, and the unused time budget 
is considered as lost time. On the other hand, the sum of service times is 
defined as the useful time. Thus, if it is possible to enlarge the share of 
useful time in the time budget, the efficiency of the proposed tour will be 
increased. Therefore, at this point, further investigations have been 
performed to show the importance of adding the service time dependent 
profit into the TDOPTW, specifically when routes are more congested. In 
a more congested traffic network, we expect a lower ratio of useful time 
over the time budget, and therefore being more flexible in selecting a 
proper service time would be more beneficial. 

In these experiments, all travel times of the Shiraz instance are 
multiplied by 3 (and checked to satisfy the FIFO condition) to have a 
more congested network. Then, the new instance is solved in two sce
narios: i) when profits are fixed using the corresponding maximum 
values (Sce 1-Max-3), and ii) when profits are service time dependent 
(Sce 0–3). Table 5.7 presents the results summary. In this table, the first 
two rows correspond to the base scenario and the Sce 1-Max which are 
explained earlier in this section. The next two rows show the results of 
the same scenarios when travel times are tripled. 

In Table 5.7, For each scenario, the profit shows the total profit of the 
proposed tour; The tour time shows the total time of the tour including 
the visit times, travel times and waiting times; The useful time is the 
total time used only for visiting POIs; and the last column shows the ratio 
of useful time over time budget as an indication of the tour efficiency. 

When we compare the Sce 0 to Sce 1-Max, the ratio of useful time/ 
time budget is increased from 89.3% to 89.7% and the profit is increased 
from 270 to 274.025. Moreover, compare Sce 0–3 to Sce 1-Max-3, this 
ratio is increased from 75.0% to 77.1% and profit is increased from 226 
to 233.516. Note that an increase in the profit does not necessarily mean 
the growth in the useful time/time budget ratio. 

Based on these results, we conclude that the increase in profit when 
we compare the TDOPTW-STP with the TDOPTW, is more noticeable 
when the network is congested. These results show that the TDOPTW- 
STP gives a higher chance for a better time budget management to the 
tourist. 

6. Conclusion 

In this paper, the time dependent orienteering problem with time 
windows and service time dependent profit is introduced. In the 
TDOPTW-STP, the profit of visiting a vertex depends on the duration of 

the visit, and this characteristic is added to the time dependent variant of 
the OPTW, which makes it even more complex to solve. This complex 
problem has interesting applications in practice, including personalized 
tourist trip planning. To solve the TDOPTW-STP, a variable neighbor
hood search is proposed, which uses three local search moves of Insert, 
Swap, and Replace, adapted to find proper service times together with a 
good order of visits. 

First, the proposed method is compared with the results of the Ant 
Colony System (ACS) by Verbeeck et al. (2017) for the TDOPTW in
stances. The average and maximum gaps are 2.5 and 8.7% and the 
average and maximum computation times are 0.30 and 1.4 s. Next, 6 
new instances of TDOPTW-STP are generated and solved using the 
proposed mathematical model (Set 1). Results are compared with the 
VNS on these instances. The average gap is only 0.54 % and the average 
computation time is 0.03 s. In the next step, new TDOPTW-STP instances 
with known optimal (best) solutions are generated based on the best 
known solutions of Verbeeck et al. (2017). For this set (Set 2), in 29 out 
of 36 instances, the best known solution is found or improved. In 
addition, the average and maximum gaps are only 0.03 % and 1.86 %, 
respectively. Furthermore, a real data set is created over the city of 
Shiraz (in Iran) with 39 vertices. Using 6 different scenarios, it is 
demonstrated that the proposed algorithm is able to obtain high-quality 
solutions in real-time. This analysis also clearly shows the significant 
impact of the service time dependent profit property, especially in the 
presence of time dependency and time windows. Moreover, an extra 
analysis proved a better time budget management for the tourist when 
the TDOPTW-STP is used in practice. 

For future extensions, a major challenge would be to deal with other 
types of profit function including a nonlinear one. Another interesting 
extension would be to address the discrete service time version of the 
problem, similar to Erdoǧan and Laporte (2013), where multiple visits to 
each vertex are allowed. Further research could focus on the TDOPTW- 
STP with multiple routes. Several vertices may also have different profit 
functions which depend on certain factors such as weather conditions or 
that are closed on certain days. For example, parks have a higher profit 
when the sun is shining than when it is raining. Furthermore, our 
problem could be extended by adding mandatory vertices (such as 
‘must-see POIs’ or mandatory customers) or a lunch break. This break 
has no fixed location or exact timing. In these extensions, some addi
tional constraints should be added and the complexity of the problem 
will be significantly increased. Lastly, in this paper, we have ignored that 
the departure time of the start depot could be a decision variable. 
Therefore, an interesting challenge would be to solve a TDOPTW-STP in 
which the departure time from the start depot is an additional decision 
variable. These proposed extensions of the problem will help to model 
more realistic situations in tourism, logistics, and other possible appli
cations of the problem. 
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Appendix A. Preliminary experiment for sorting neighbors in the Initialization phase of the solution algorithm 

See Tables A.1 and A.2. 

Table A.1 
Sorting states.  

State Sorting criterion 

1 without sorting 
2 pmin

j /
(

smin
j +ttmin

ij

)

3 pAve
j /

(
sAve
j +ttij

)

4 pmax
j /

(
smax
j +ttmin

ij

)

Table A.2 
Detailed results of solution algorithm on Set 1 and Set 2 for each sorting state.  

Set Instance state 1 state 2 state 3 state 4   

Profit CPU (Sec) Profit CPU (Sec) Profit CPU (Sec) Profit CPU (Sec) 

1 20.1.1  211.06  0.04  211.06  0.05  211.06  0.04  211.06  0.04 
1 20.1.2  221.91  0.02  221.91  0.02  221.91  0.02  221.91  0.02 
1 20.1.3  236.28  0.02  236.28  0.02  236.28  0.02  236.28  0.02 
1 20.2.1  237.12  0.02  237.12  0.02  237.12  0.02  237.12  0.02 
1 20.2.2  258.26  0.02  258.26  0.02  258.26  0.02  258.26  0.02 
1 20.2.3  240.06  0.03  240.06  0.03  240.06  0.03  240.06  0.03 
2 20.1.1  159.00  0.02  159.00  0.02  159.00  0.02  159.00  0.02 
2 20.1.2  173.00  0.01  173.00  0.01  173.00  0.02  173.00  0.02 
2 20.1.3  184.00  0.02  184.00  0.02  184.00  0.02  184.00  0.02 
2 20.2.1  188.00  0.02  188.00  0.02  188.00  0.02  188.00  0.02 
2 20.2.2  201.00  0.02  201.00  0.02  201.00  0.02  201.00  0.02 
2 20.2.3  195.00  0.04  195.00  0.04  195.00  0.03  195.00  0.04 
2 20.3.1  277.00  0.07  277.00  0.06  277.00  0.07  277.00  0.06 
2 20.3.2  246.00  0.03  246.00  0.03  246.00  0.03  246.00  0.03 
2 20.3.3  259.00  0.04  259.00  0.03  259.00  0.03  259.00  0.04 
2 20.4.1  274.00  0.13  274.00  0.13  274.00  0.13  274.00  0.13 
2 20.4.2  275.00  0.05  275.00  0.04  275.00  0.04  275.00  0.05 
2 20.4.3  268.00  0.11  268.00  0.11  268.00  0.11  268.00  0.11 
2 50.1.1  288.00  0.12  288.00  0.12  288.00  0.12  288.00  0.12 
2 50.1.2  274.00  0.11  274.00  0.11  274.00  0.11  274.00  0.10 
2 50.1.3  289.00  0.10  289.00  0.10  289.00  0.11  289.00  0.25 
2 50.2.1  298.00  0.21  298.00  0.21  298.00  0.21  298.00  0.29 
2 50.2.2  310.00  0.10  310.00  0.12  310.00  0.12  310.00  0.10 
2 50.2.3  340.00  0.35  340.00  0.33  340.00  0.34  340.00  0.34 
2 50.3.1  332.74  0.17  332.74  0.17  332.74  0.17  332.74  0.17 
2 50.3.2  404.00  0.22  404.00  0.21  404.00  0.21  404.00  0.22 
2 50.3.3  362.00  0.33  362.00  0.33  362.00  0.33  362.00  0.34 
2 50.4.1  473.83  0.74  473.83  0.74  473.83  0.74  473.83  0.77 
2 50.4.2  434.00  0.32  434.00  0.33  434.00  0.33  434.00  0.32 
2 50.4.3  450.00  0.36  450.00  0.37  450.00  0.36  450.00  0.39 
2 100.1.1  275.00  0.48  275.00  0.48  275.00  0.48  275.00  0.50 
2 100.1.2  276.00  0.36  276.00  0.36  276.00  0.37  276.00  0.37 
2 100.1.3  343.00  0.99  343.00  0.97  343.00  0.96  343.00  1.02 
2 100.2.1  351.00  1.12  351.00  1.14  351.00  1.13  351.00  1.13 
2 100.2.2  362.81  1.10  362.81  1.11  362.81  1.11  362.81  1.15 
2 100.2.3  370.00  1.08  370.00  1.08  370.00  1.11  370.00  1.09 
2 100.3.1  437.00  1.70  437.00  1.71  437.00  1.71  437.00  1.76 
2 100.3.2  454.00  1.54  454.00  1.53  454.00  1.54  454.00  1.57 
2 100.3.3  470.00  1.57  470.00  1.58  470.00  1.59  470.00  1.60 
2 100.4.1  484.00  2.33  484.00  2.35  484.00  2.35  484.00  2.37 
2 100.4.2  497.00  1.53  497.00  1.53  497.00  1.53  497.00  1.55 
2 100.4.3  540.00  3.33  540.00  3.41  540.00  3.37  540.00  3.37 

Min   159.00  0.01  159.00  0.01  159.00  0.02  159.00  0.02 
Ave   314.74  0.50  314.74  0.50  314.74  0.50  314.74  0.51 
Max   540.00  3.33  540.00  3.41  540.00  3.37  540.00  3.37  
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Appendix B. The flowchart and a numerical example of FindBestS (for insertion of vertex r between vertex i and vertex j) 

See Fig. B.1 and Fig. B.2. 

Fig. B.1. Flowchart of FindBestS.  

Fig. B.2. A numerical example of FindBestS.  
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Appendix C. The TDOPTW-STP Shiraz instance 

See Table C.1. 

Appendix D. Details of finding travel times for the real instance of Shiraz 

To consider changes in the travel time of the road network during the day, the day time between 6 am and 10 pm is divided into 65 time slots of 15 
min. Therefore, to collect the travel time of the network during the day, a travel time matrix with dimensions of 39 by 39 is created 65 times (at the 
start of each time slot) during the day. 

To collect this information, the online information of the “Neshan” website is used. “Neshan” is a navigation application similar to “Waze” and 
belongs to an Iranian company called “Rajman Information Structures”. It uses the information technology (IT) and by analyzing the temporal-spatial 
position of vehicle probes in the urban road network, produces high quality and accurate data including road travel times. In fact, a user request 
includes the location of origin and destination, and the response includes the proposed route and the corresponding travel time at that moment. 

For a large volume of requests at one moment, it is impossible to do this step manually. Therefore, a Python program has been used. The program 
first asks the input information including the number of vertices, the geographical coordinates of the vertices, start and end time of data gathering, and 
the length of the time slots. Then, at the start of each time slot, a matrix containing 39*39 requests is sent and the received responses are recorded in a 
text file. This process is repeated 65 times, every 15 min, during the day. The received time dependent travel times per time slot are stored for each 
virtual arc. A virtual arc is a dummy arc that holds a concatenation of arcs connecting two POIs. During this process, the linear piecewise travel times 

are guaranteed to follow the FIFO rule if 
⃒
⃒
⃒μijt

⃒
⃒
⃒ ≤ 1 (Fleischmann et al., 2004). 
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